OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 8 — Aug. 1, 2009
  • pp: 1805–1813

Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters

Vaibhav Gaind, Kevin J. Webb, Sumith Kularatne, and Charles A. Bouman  »View Author Affiliations

JOSA A, Vol. 26, Issue 8, pp. 1805-1813 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (616 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fluorescence resonance energy transfer (FRET) is a nonradiative energy transfer process based on dipole-dipole interaction between donor and acceptor fluorophores that are spatially separated by a distance of a few nanometers. FRET has proved to be of immense value in the study of cellular function and the underlying cause of disease due to, for example, protein misfolding (of consequence in Alzheimer’s disease). The standard parameterization in intramolecular FRET is the lifetime and yield, which can be related to the donor-acceptor (DA) distance. FRET imaging has thus far been limited to in vitro or near-surface microscopy because of the deleterious effects of substantial scatter. We show that it is possible to extract the microscopic FRET parameters in a highly scattering environment by incorporating the FRET kinetics of an ensemble of DA molecules connected by a flexible or rigid linker into an optical diffusion tomography (ODT) framework. We demonstrate the efficacy of our approach for extracting the microscopic DA distance through simulations and an experiment using a phantom with scattering properties similar to tissue. Our method will allow the in vivo imaging of FRET parameters in deep tissue, and hence provide a new vehicle for the fundamental study of disease.

© 2009 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: December 2, 2008
Revised Manuscript: April 20, 2009
Manuscript Accepted: May 13, 2009
Published: July 15, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics
August 26, 2009 Spotlight on Optics

Vaibhav Gaind, Kevin J. Webb, Sumith Kularatne, and Charles A. Bouman, "Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters," J. Opt. Soc. Am. A 26, 1805-1813 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenze,” Ann. Phys. 2, 55 (1948). [CrossRef]
  2. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer Academic, 1999).
  3. R. D. Mitra, C. M. Silva, and D. C. Youvan, “Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of green fluorescent protein,” Gene 173, 13-17 (1996). [CrossRef] [PubMed]
  4. Y. Suzuki, T. Yasunaga, R. Ohkura, T. Wakabayashi, and K. Sutoh, “Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps,” Nature 396, 380-383 (1998). [CrossRef] [PubMed]
  5. M. Sato, T. Ozawa, K. Inukai, T. Asano, and Y. Umezawa, “Fluorescent indicators for imaging protein phosphorylation in single living cells,” Nat. Biotechnol. 20, 287-294 (2002). [CrossRef] [PubMed]
  6. A. Miyawaki, J. Llopis, R. Heim, J. McCaffery, J. Adams, M. Ikura, and R. Tsien, “Fluorescent indicators for, Ca2+ based on green fluorescent proteins and calmodulin,” Nature 388, 881-887 (1997).
  7. N. Mahajan, K. Linder, G. Berry, G. Gordon, R. Heim, and B. Herman, “Bcl-2 and bax interactions in mitochondria probed with green fluorescence protein and fluorescence resonance energy transfer,” Nat. Biotechnol. 16, 547-552 (1998). [CrossRef] [PubMed]
  8. E. Haas, “The study of protein folding and dynamics by determination of intramolecular distance distributions and their fluctuations using ensemble and single-molecule FRET measurement,” Chem. Phys. 6, 858-870 (2005). [CrossRef]
  9. K. Truong and M. Ikura, “The use of FRET imaging technology to detect protein-protein interactions and protein conformational changes in vivo,” Curr. Op. Struct. Biol. 11, 573-578 (2001). [CrossRef]
  10. C. Dobson, “The structural basis of protein folding and its links with human disease,” Phil. Trans. R. Soc. Lond. B 356, 133-145 (2001). [CrossRef]
  11. A. Bullock and A. Fersht, “Rescuing the function of mutant p53,” Nat. Rev. Cancer 1, 1 (2001). [CrossRef]
  12. J. Mills, J. Stone, D. Rubin, D. Melon, D. Okonkwo, and A. P. G. Helm, “Illuminating protein interactions in tissue using confocal and two-photon excitation fluorescent resonance energy transfer microscopy,” J. Biomed. Opt. 8, 347-356 (2003). [CrossRef] [PubMed]
  13. R. Yasuda, C. Harvey, H. Zhong, A. Sobczyk, L. Aelst, and K. Svoboda, “Supersenstive ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging,” Nature Neurosci. 9, 283-291 (2006). [CrossRef] [PubMed]
  14. D. Stockholm, M. Bartoli, G. Sillon, N. Bourg, J. Davoust, and I. Richard, “Imaging calpain protease activity by multiphoton FRET in living mice,” J. Mol. Biol. 346, 215-222 (2005). [CrossRef] [PubMed]
  15. A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, and R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95-97 (2002). [CrossRef]
  16. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R43 (2005). [CrossRef] [PubMed]
  17. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081-3094 (2003). [CrossRef] [PubMed]
  18. S. Tyagi and F. Kramer, “Molecular beacons: Probes that fluoresce upon hybridization,” Nat. Biotechnol. 14, 303-308 (1996). [CrossRef] [PubMed]
  19. V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757-760 (2002). [CrossRef] [PubMed]
  20. S. Bernacchi and Y. Mely, “Exciton interaction in molecular beacons: a sensitive sensor for short range modifications of the nucleic acid structure,” Nucleic Acids Res. 29, e62 (2001). [CrossRef] [PubMed]
  21. S. Marras, F. Kramer, and S. Tyagi, “Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes,” Nucleic Acids Res. 30, e122 (2002). [CrossRef] [PubMed]
  22. A. Milstein, J. Stott, S. Oh, D. Boas, R. Millane, C. Bouman, and K. Webb, “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. Am. A 21, 1035-1049 (2004). [CrossRef]
  23. J. C. Ye, K. J. Webb, C. A. Bouman, and R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400-2412 (1999). [CrossRef]
  24. S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, and K. J. Webb, “Source-detector calibration in three-dimensional Bayesian optical diffusion tomography,” J. Opt. Soc. Am. A 19, 1983-1993 (2002). [CrossRef]
  25. J. C. Ye, C. A. Bouman, K. J. Webb, and R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909-922 (2001). [CrossRef]
  26. P. Schwille, S. Kummer, A. Heikal, W. Moerner, and W. Webb, “Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins,” Proc. Natl. Acad. Sci. U.S.A. 97, 151-156 (2000). [CrossRef] [PubMed]
  27. www.microscopyu.com/tutorials/java/fluorescence/fpfret/index.html.
  28. J. C. Adams, “Mudpack: Multigrid portable fortran software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113-146 (1989). [CrossRef]
  29. J. C. Adams, Multigrid Software for Elliptic Partial Differential Equations (National Center for Atmospheric Research, Boulder, Colorado, 1991).
  30. J. Yang, H. Chen, I. Vlahov, J. Cheng, and P. Low, “Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging,” Proc. Natl. Acad. Sci. U.S.A. 103, 13872-13877 (2006). [CrossRef] [PubMed]
  31. http://www.edmundoptics.com/onlinecatalog/displayproduct.cfm?productid=1903.
  32. G. Hale and M. Querry, “Optical constants of water in the 200 nmto200 μm wavelength region,” Appl. Opt. 12, 555-563 (1973). [CrossRef] [PubMed]
  33. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16, 5907-5925 (2008). [CrossRef] [PubMed]
  34. http://probes.invitrogen.com/handbook/sections/0104.html.
  35. L. Berg, D. W. McKeel, J. P. Miller, M. Storandt, E. H. Rubin, J. C. Morris, J. Baty, M. Coats, J. Norton, A. M. Goate, J. L. Price, M. Gearing, S. S. Mirra, and A. M. Saunders, “Clinicopatholigic studies in cognitively healthy aging and Alzheimer disease,” Arch. Neurol. 55, 326-355 (1998). [CrossRef] [PubMed]
  36. B. Bacskai, J. Skoch, G. Hickey, R. Allen, and B. Hyman, “Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques,” J. Biomed. Opt. 8, 368-375 (2003). [CrossRef] [PubMed]
  37. C. Dobson, “Protein folding and misfolding,” Nature 426, 884-890 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited