OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 1 — Jan. 1, 2010
  • pp: 58–68

Gaussian beam interaction with an air-gap Fizeau interferential wedge

Elena Stoykova and Marin Nenchev  »View Author Affiliations


JOSA A, Vol. 27, Issue 1, pp. 58-68 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000058


View Full Text Article

Enhanced HTML    Acrobat PDF (1089 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a plane-wave-expansion approach for calculation of the fringe pattern in transmission and reflection for a Gaussian monochromatic beam. Both positive and negative incidence, at which the incident light beam undergoes multiple reflections within the wedge in direction of increasing or decreasing wedge thickness respectively, are analyzed. It is shown that the two opposite incidences of the light beam are described by the same mathematical expressions; i.e., the transmitted/reflected fringe pattern at positive incidence is a continuation of the pattern at negative incidence at some distance from the wedge. Numerical simulations are made for a high-reflectivity-coating air-gap Fizeau interferential wedge with apex angle of 5 100 μ rad and thickness of 5 500 μ m as a useful optical element in laser resonator design. Experimental verification is also provided.

© 2009 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 14, 2009
Revised Manuscript: September 11, 2009
Manuscript Accepted: September 24, 2009
Published: December 9, 2009

Citation
Elena Stoykova and Marin Nenchev, "Gaussian beam interaction with an air-gap Fizeau interferential wedge," J. Opt. Soc. Am. A 27, 58-68 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-1-58


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, 1999).
  2. M. V. Mantravardi, “Newton, Fizeau and Haidinger interferometers,” in Optical Shop Testing, D.Malacara, ed. (Wiley-Interscience, 1992), pp. 1-49.
  3. R. Józwicki, M. Kujawinska, and L. Salbut, “New contra old wavefront measurement concepts for interferometric optical testing,” Opt. Eng. (Bellingham) 31, 422-433 (1992). [CrossRef]
  4. B. Dorrio, A. Doval, C. Lopez, R. Soto, J. Blanco-Garcia, J. Fernandez, and M. Perez-Amor, “Fizeau phase-measuring interferometry using the moiré effect,” Appl. Opt. 34, 3639-3643 (1995). [CrossRef] [PubMed]
  5. B. Dorrio, C. Lopez, J. Alen, J. Bugarin, A. Fernandez, A. Doval, J. Blanco-Garcia, M. Perez-Amor, and J. Fernandez, “Multiplicative moiré two-beam phase-stepping and Fourier-transform methods for the evaluation of multiple-beam Fizeau patterns: a comparison,” Appl. Opt. 37, 1945-1952 (1998). [CrossRef]
  6. Y. Ishii, J. Chen, R. Onodera, and T. Nakamura, “Phase-shifting Fizeau interference microscope with a wavelength-shifted laser diode,” Appl. Opt. 42, 60-67 (2003). [CrossRef]
  7. M. Morris, T. Mollrath, and J. Snyder, “Fizeau wavemeter for pulsed laser wavelength measurement,” Appl. Opt. 23, 3862-3868 (1984). [CrossRef] [PubMed]
  8. C. Reiser and B. Lopert, “Laser wavemeter with solid Fizeau wedge interferometer,” Appl. Opt. 27, 3656-3660 (1988). [CrossRef] [PubMed]
  9. J. Snyder and T. Hansch, “Direct frequency approaches impact wavelength meters,” Laser Focus World February 1990 pp. 69-76.
  10. E. Alipieva, E. Stoykova, and V. Nikolova, “Wavemeter with Fizeau interferometer for CW lasers,” Proc. SPIE 4397, 129-133 (2001). [CrossRef]
  11. T. Kajava, H. Lauranto, and R. Salomaa, “Fizeau interferometer in spectral measurements,” J. Opt. Soc. Am. B 10, 1980-1989 (1993). [CrossRef]
  12. T. Kajava, H. Lauranto, and A. Friberg, “Interference pattern of the Fizeau interferometer,” J. Opt. Soc. Am. A 11, 2045-2054 (1994). [CrossRef]
  13. Y. Meyer and M. Nenchev, “Single-mode dye laser with a double-action Fizeau interferometer,” Opt. Lett. 6, 119-121 (1981). [CrossRef] [PubMed]
  14. M. Nenchev and Y. Meyer, “Continuous-scanning system for single-mode wedge dye lasers,” Opt. Lett. 7, 199-200 (1982). [CrossRef] [PubMed]
  15. M. Nenchev, A. Deleva, E. Stoykova, Z. Peshev, T. Patrikov, and A. Gizbrekht, “Controlled time-delayed pulses operation of a two-wavelength combined dye-Ti:Al2O3 laser,” Opt. Commun. 86, 405-408 (1991). [CrossRef]
  16. M. Gorris-Neveux, M. Nenchev, R. Barbe, and J.-C. Keller, “A two-wavelength, passively self-injection locked, cw Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31, 1260-1263 (1995). [CrossRef]
  17. M. Deneva, D. Slavov, E. Stoykova, and M. Nenchev, “Improved passive self-injection locking method for spectral control of dye and Ti:Al2O3 lasers using two-step pulse pumping,” Opt. Commun. 139, 287-298 (1997). [CrossRef]
  18. M. Deneva, E. Stoykova, and M. Nenchev, “A novel technique for a narrow-line selection and wideband tuning of Ti3+:Al2O3 and dye lasers,” Rev. Sci. Instrum. 67, 1705-1714 (1996). [CrossRef]
  19. E. Stoykova and M. Nenchev, “Strong optical asymmetry of an interference wedge with unequal reflectivity mirrors and its use in unidirectional ring laser designs,” Opt. Lett. 19, 1925-1927 (1994). [CrossRef] [PubMed]
  20. E. Stoykova and M. Nenchev, “Fizeau wedge with unequal mirrors for spectral control and coupling in a linear laser oscillator-amplifier system,” Appl. Opt. 40, 5402-5412 (2001). [CrossRef]
  21. Y. Meyer, “Fringe shape with an interferential wedge,” J. Opt. Soc. Am. 71, 1255-1261 (1981). [CrossRef]
  22. J. Brossel, “Multiple-beam localized fringes. Part I. Intensity distribution and localization,” Proc. Phys. Soc. London 59, 224-234 (1947). [CrossRef]
  23. A. Pomeranski and U. Tomashevski, “Spatial structure of multiple Fizeau interference,” Opt. Spektrok. 45, 773-779 (1978) (in Russian).
  24. E. Stoykova and M. Nenchev, “Reflection and transmission of unequal mirrors interference wedge,” Opt. Quantum Electron. 27, 155-167 (1996).
  25. M. Nenchev and E. Stoykova, “Interference wedge properties relevant to laser applications: transmission and reflection of the restricted light beams,” Opt. Quantum Electron. 25, 789-799 (1993). [CrossRef]
  26. E. Stoykova, “Transmission of a Gaussian beam by a Fizeau interferential wedge,” J. Opt. Soc. Am. A 22, 2756-2765 (2005). [CrossRef]
  27. J. Goodman, Introduction to Fourier Optics (Roberts, 2004).
  28. G. S. Smith, An Introduction to Classical Electromagnetic Radiation (Cambridge Univ. Press, 1997).
  29. E. Nichelatti and G. Salvetti, “Spatial and spectral response of a Fabry-Perot interferometer illuminated by a Gaussian beam,” Appl. Opt. 34, 4703-4712 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited