OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2411–2422

Analytical solutions to light scattering by plasmonic nanoparticles with nearly spherical shape and nonlocal effect

Huai-Yi Xie, Ming-Yaw Ng, and Yia-Chung Chang  »View Author Affiliations


JOSA A, Vol. 27, Issue 11, pp. 2411-2422 (2010)
http://dx.doi.org/10.1364/JOSAA.27.002411


View Full Text Article

Enhanced HTML    Acrobat PDF (210 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We derive analytical solutions for the scattering of electromagnetic waves by a nanoparticle with nearly spherical shape and nonlocal dielectric function by using an extended Mie scattering theory with additional boundary conditions. A perturbation method is used to treat the correction due to deviation from the spherical shape. A surface characteristic function is introduced to describe the non-spherical surface profile of the nanoparticle, and it plays an important role in our analytical formulation. Complex surface plasmon modes are obtained. It is found that not only the transverse but also the longitudinal surface plasmon modes of the nanoparticle are excited due to the nonlocal effect. Our analytical formulation provides an alternative method for investigating the optical behaviors of the surface plasmon of nanoparticles with nearly spherical shape and nonlocal effect.

© 2010 Optical Society of America

OCIS Codes
(290.0290) Scattering : Scattering
(290.5850) Scattering : Scattering, particles
(290.5880) Scattering : Scattering, rough surfaces

ToC Category:
Scattering

History
Original Manuscript: May 19, 2010
Manuscript Accepted: July 29, 2010
Published: October 18, 2010

Citation
Huai-Yi Xie, Ming-Yaw Ng, and Yia-Chung Chang, "Analytical solutions to light scattering by plasmonic nanoparticles with nearly spherical shape and nonlocal effect," J. Opt. Soc. Am. A 27, 2411-2422 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-11-2411


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  2. Y. G. Sun and Y. N. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176–2179 (2002). [CrossRef] [PubMed]
  3. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002). [CrossRef]
  4. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998). [CrossRef]
  5. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001). [CrossRef]
  6. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. V. Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005). [CrossRef] [PubMed]
  7. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006). [CrossRef] [PubMed]
  8. J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3, 485–491 (2003). [CrossRef]
  9. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The Influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  10. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  11. H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008). [CrossRef] [PubMed]
  12. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004). [CrossRef] [PubMed]
  13. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. (Leipzig) 330, 377–445 (1908). [CrossRef]
  14. S. Asano and G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Opt. 14, 29–49 (1975). [PubMed]
  15. V. A. Erma, “Exact solution for the scattering of electromagnetic waves from bodies of arbitrary shape. III. Obstacles with arbitrary electromagnetic properties,” Phys. Rev. 179, 1238–1246 (1969). [CrossRef]
  16. J. Vielma and P. T. Leung, “Nonlocal optical effects on the fluorescence and decay rates for admolecules at a metallic nanoparticle,” J. Chem. Phys. 126, 194704 (2007). [CrossRef] [PubMed]
  17. W. Ekardt and Z. Penzar, “Nonradiative lifetime of excited states near a small metal particle,” Phys. Rev. B 34, 8444–8448 (1986). [CrossRef]
  18. P. Halevi, Spatial Dispersion in Solid and Plasmas (North-Holland, 1992).
  19. G. Barton, “Some surface effects in the hydrodynamic model of metals,” Rep. Prog. Phys. 42, 963–1016 (1979). [CrossRef]
  20. J. Lindhard, “On the properties of gas of charged particles,” K. Dan. Fidensk. Selsk. Mat. Fys. Medd. 28, 1–57 (1954).
  21. Y. -C. Chang, , “Exact dynamical exchange-correlation kernel of a weakly inhomogenous electron gas,” Phys. Rev. Lett. 102, 113001 (2009). [CrossRef] [PubMed]
  22. G. Onida, L. Reining, and A. Rubio, “Electronic excitations: density-functional versus many-body Green’s-function approaches,” Rev. Mod. Phys. 74, 601–659 (2002). [CrossRef]
  23. R. Fuchs and F. Claro, “Multipolar response of small metallic spheres: Nonlocal theory,” Phys. Rev. B 35, 3722–3727 (1987). [CrossRef]
  24. R. Rojas, F. Claro, and R. Fuchs, “Nonlocal response of a small coated sphere,” Phys. Rev. B 37, 6799–6807 (1988). [CrossRef]
  25. R. Chang and P. T. Leung, “Nonlocal effects on optical and molecular interactions with metallic nanoshells,” Phys. Rev. B 73, 125438 (2006). [CrossRef]
  26. R. Chang and P. T. Leung, “Erratum: Nonlocal effects on optical and molecular interactions with metallic nanoshells,” Phys. Rev. B 75, 079901 (2006). [CrossRef]
  27. H. Y. Xie, H. Y. Chung, P. T. Leung, and D. P. Tsai, “Plasmonic enhancement of Förster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects,” Phys. Rev. B 80, 155448 (2009). [CrossRef]
  28. R. Ruppin, “Optical properties of small metal spheres,” Phys. Rev. B 11, 2871–2876 (1975). [CrossRef]
  29. V. Yannopapas, “Non-local optical response of two-dimensional arrays of metallic nanoparticles,” J. Phys. Condens. Matter 20, 325211 (2008). [CrossRef]
  30. R. Schoonover, J. M. Rutherford, O. Keller, and P. S. Carney, “Nonlocal constitutive relations and the quasi-homogeneous approximation,” Phys. Lett. A 342, 363–367 (2005). [CrossRef]
  31. A. Moroz, “A recursive transfer-matrix solution for a dipole radiating inside and outside a stratified sphere,” Ann. Phys. (N.Y.) 315, 352–418 (2005). [CrossRef]
  32. J. M. McMahon, S. K. Gray, and G. C. Schatz, “Nonlocal optical response of metal nanostructures with arbitrary shape,” Phys. Rev. Lett. 103, 097403 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited