OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2423–2431

Aperiodic Fourier modal method in contrast-field formulation for simulation of scattering from finite structures

Maxim Pisarenco, Joseph Maubach, Irwan Setija, and Robert Mattheij  »View Author Affiliations


JOSA A, Vol. 27, Issue 11, pp. 2423-2431 (2010)
http://dx.doi.org/10.1364/JOSAA.27.002423


View Full Text Article

Enhanced HTML    Acrobat PDF (331 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper extends the area of application of the Fourier modal method (FMM) from periodic structures to aperiodic ones, in particular for plane-wave illumination at arbitrary angles. This is achieved by placing perfectly matched layers at the lateral sides of the computational domain and reformulating the governing equations in terms of a contrast field that does not contain the incoming field. As a result of the reformulation, the homogeneous system of second-order ordinary differential equations from the original FMM becomes non-homogeneous. Its solution is derived analytically and used in the established FMM framework. The technique is demonstrated on a simple problem of planar scattering of TE-polarized light by a single rectangular line.

© 2010 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(290.2558) Scattering : Forward scattering

ToC Category:
Diffraction and Gratings

History
Original Manuscript: June 10, 2010
Revised Manuscript: September 1, 2010
Manuscript Accepted: September 2, 2010
Published: October 20, 2010

Citation
Maxim Pisarenco, Joseph Maubach, Irwan Setija, and Robert Mattheij, "Aperiodic Fourier modal method in contrast-field formulation for simulation of scattering from finite structures," J. Opt. Soc. Am. A 27, 2423-2431 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-11-2423


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  2. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  3. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
  4. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996). [CrossRef]
  5. G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996). [CrossRef]
  6. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996). [CrossRef]
  7. E. Popov and M. Nevière, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773–1784 (2000). [CrossRef]
  8. E. Popov and M. Nevière, “Maxwell equations in Fourier space: fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media,” J. Opt. Soc. Am. A 18, 2886–2894 (2001). [CrossRef]
  9. T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A 24, 2880–2890 (2007). [CrossRef]
  10. S. Rafler, P. Götz, M. Petschow, T. Schuster, K. Frenner, and W. Osten, “Investigation of methods to set up the normal vector field for the differential method,” Proc. SPIE 6995, 69960Y (2008).
  11. G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16, 2510–2516 (1999). [CrossRef]
  12. P. Lalanne, M. Besbes, J. P. Hugonin, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 207022, (2007). [CrossRef]
  13. J. Saarinen, E. Noponen, and J. P. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34, 2560–2566 (1995). [CrossRef]
  14. P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett. 25, 1092–1094 (2000). [CrossRef]
  15. E. Silberstein, P. Lalanne, J.-P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001). [CrossRef]
  16. J. P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22, 1844–1849 (2005). [CrossRef]
  17. J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  18. R. Petit, Electromagnetic Theory of Gratings(Topics in Applied Physics) (Springer, 1980). [CrossRef]
  19. A. Sommerfeld, Partial Differential Equations in Physics(Pure and Applied Mathematics: A Series of Monographs and Textbooks, Vol. 1) (Academic Press, 1949).
  20. W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994). [CrossRef]
  21. W. C. Chew, J. M. Jin, and E. Michielssen, “Complex coordinate stretching as a generalized absorbing boundary condition,” Microwave Opt. Technol. Lett. 15, 363–369 (1997). [CrossRef]
  22. R. J. Swift and S. A. Wirkus, A Course in Ordinary Differential Equations (CRC Press, 2006).
  23. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  24. R. H. Morf, “Exponentially convergent and numerically efficient solution of Maxwell’s equations for lamellar gratings,” J. Opt. Soc. Am. A 12, 1043–1056 (1995). [CrossRef]
  25. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982). [CrossRef]
  26. K. A. Michalski and D. Zheng, “Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media. I—Theory. II—Implementation and results for contiguous half-spaces,” IEEE Trans. Antennas Propag. 38, 335–352 (1990). [CrossRef]
  27. K. Edee, G. Granet, and J.-P. Plumey, “Complex coordinate implementation in the curvilinear coordinate method: application to plane-wave diffraction by nonperiodic rough surfaces,” J. Opt. Soc. Am. A 24, 1097–1102 (2007). [CrossRef]
  28. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House Publishers, 2005).
  29. B. Bai and J. Turunen, “Fourier modal method for the analysis of second-harmonic generation in two-dimensionally periodic structures containing anisotropic materials,” J. Opt. Soc. Am. B 24, 1105–1112 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited