OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 12 — Dec. 1, 2010
  • pp: 2542–2550

Comprehensive microscopic model of the extraordinary optical transmission

Haitao Liu and Philippe Lalanne  »View Author Affiliations

JOSA A, Vol. 27, Issue 12, pp. 2542-2550 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (703 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



As shown in a recent letter [ Nature 452, 728 (2008) ] with a microscopic model, the phenomenon of the extraordinary optical transmission (EOT) is intrinsically due to two distinct surface waves: the surface plasmon polariton and the quasi-cylindrical wave (quasi-CW) that efficiently funnel light into the hole aperture at resonance. Here we present a comprehensive microscopic model of the EOT that takes into account the two surface waves. The model preserves the desirable physical insight of the previous approach, but since it additionally takes into account the quasi-CWs, it provides highly accurate predictions over a much broader spectral range, from visible to microwave radiation. The net outcome is a complete understanding of many aspects of the EOT and especially of the role of the metal conductivity that has largely puzzled the initial interpretations. We believe that the main conclusions of the present analysis may be applied to many Wood-type surface resonances on metallic surfaces.

© 2010 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: June 28, 2010
Revised Manuscript: September 10, 2010
Manuscript Accepted: October 4, 2010
Published: November 2, 2010

Virtual Issues
November 1, 2010 Spotlight on Optics

Haitao Liu and Philippe Lalanne, "Comprehensive microscopic model of the extraordinary optical transmission," J. Opt. Soc. Am. A 27, 2542-2550 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007). [CrossRef] [PubMed]
  2. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. (Washington, D.C.) 108, 494–521 (2008). [CrossRef]
  3. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nature Mater. 9, 407–412 (2010). [CrossRef]
  4. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005). [CrossRef] [PubMed]
  5. C. H. Gan, G. Gbur, and T. D. Visser, “Surface plasmons modulate the spatial coherence of light in Young’s interference experiment,” Phys. Rev. Lett. 98, 043908 (2007). [CrossRef] [PubMed]
  6. L. Cai, G. Y. Li, Z. H. Wang, and A. S. Xu, “Interference and horizontal Fabry–Perot resonance on extraordinary transmission through a metallic nanoslit surrounded by grooves,” Opt. Lett. 35, 127–129 (2010). [CrossRef] [PubMed]
  7. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005). [CrossRef] [PubMed]
  8. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007). [CrossRef]
  9. I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, “Imaging of surface plasmon scattering by lithographically created individual surface defects,” Phys. Rev. Lett. 77, 3877–3880 (1996). [CrossRef] [PubMed]
  10. C. Genet, M. P. van Exter, and J. P. Woerdman, “Huygens description of resonance phenomena in subwavelength hole arrays,” J. Opt. Soc. Am. A 22, 998–1002 (2005). [CrossRef]
  11. O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “On the phase of plasmons excited by slits in a metal film,” Opt. Express 14, 11823–11832 (2006). [CrossRef] [PubMed]
  12. G. Y. Li, L. Cai, F. Xiao, Y. J. Pei, and A. S. Xu, “A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors,” Opt. Express 18, 10487–10499 (2010). [CrossRef] [PubMed]
  13. Q. Q. Gan, Y. K. Gao, Q. Wang, L. Zhu, and F. Bartoli, “Surface plasmon waves generated by nanogrooves through spectral interference,” Phys. Rev. B 81, 085443 (2010). [CrossRef]
  14. R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, 1980). [CrossRef]
  15. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).
  16. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
  17. B. Wang and P. Lalanne, “How many surface plasmons are locally excited on the ridges of metallic lamellar gratings?” Appl. Phys. Lett. 96, 051115 (2010). [CrossRef]
  18. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  19. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001). [CrossRef] [PubMed]
  20. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008). [CrossRef] [PubMed]
  21. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2, 551–556 (2006). [CrossRef]
  22. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999). [CrossRef]
  23. X. G. Luo and T. Ishihara, “Sub-100-nm photolithography based on plasmon resonance,” Jpn. J. Appl. Phys., Part 1 43, 4017–4021 (2004). [CrossRef]
  24. S. Collin, F. Pardo, and J. L. Pelouard, “Resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector,” Appl. Phys. Lett. 83, 1521–1523 (2003). [CrossRef]
  25. C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86, 143501 (2005). [CrossRef]
  26. M. Diwekar, S. Blair, and M. Davis, “Increased light gathering capacity of sub-wavelength conical metallic apertures,” J. Nanophotonics 4, 043504 (2010). [CrossRef]
  27. G. A. Zheng, X. Q. Cui, and C. H. Yang, “Surface-wave-enabled darkfield aperture for background suppression during weak signal detection,” Proc. Natl. Acad. Sci. U.S.A. 107, 9043–9048 (2010). [CrossRef] [PubMed]
  28. S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluere, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010). [CrossRef] [PubMed]
  29. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007). [CrossRef]
  30. J. B. Pendry, L. Martin-Moreno, and J. F. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004). [CrossRef] [PubMed]
  31. F. J. García de Abajo and J. J. Saenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95, 233901 (2005). [CrossRef]
  32. P. Lalanne, J. C. Rodier, and J. P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A, Pure Appl. Opt. 7, 422–426 (2005). [CrossRef]
  33. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).
  34. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am. 31, 213–222 (1941). [CrossRef]
  35. L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julie, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nano-slit apertures,” Phys. Rev. Lett. 98, 153902 (2007). [CrossRef] [PubMed]
  36. P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-λ metallic surfaces,” Surf. Sci. Rep. 64, 453–469 (2009). [CrossRef]
  37. W. Dai and C. M. Soukoulis, “Theoretical analysis of the surface wave along a metal-dielectric interface,” Phys. Rev. B 80, 155407 (2009). [CrossRef]
  38. A. Y. Nikitin, S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “In the diffraction shadow: Norton waves versus surface plasmon polaritons in the optical region,” New J. Phys. 11, 123020 (2009). [CrossRef]
  39. H. T. Liu and P. Lalanne, “Light scattering by metallic surfaces with subwavelength patterns,” Phys. Rev. B 82, 115418 (2010). [CrossRef]
  40. Normal modes are defined as waveguide modes that obey an exponential propagation rule exp(ik0neffz) along the invariant z-direction of the waveguide; see details in .
  41. C. Vassallo, Optical Waveguide Concepts (Elsevier, 1991).
  42. X. Y. Yang, H. T. Liu, and P. Lalanne, “Cross-conversion between surface plasmon polaritons and quasi-cylindrical waves,” Phys. Rev. Lett. 102, 153903 (2009). [CrossRef] [PubMed]
  43. E. D. Palik, Handbook of Optical Constants of Solids, Part II (Academic, 1985).
  44. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001). [CrossRef]
  45. D. A. Hill and J. R. Wait, “Excitation of the Zenneck surface wave by a vertical aperture,” Radio Sci. 13, 969–977 (1978). [CrossRef]
  46. H. T. Liu, P. Lalanne, X. Y. Yang, and J. P. Hugonin, “Surface plasmon generation by subwavelength isolated objects,” IEEE J. Sel. Top. Quantum Electron. 14, 1522–1529 (2008). [CrossRef]
  47. A. Roberts and R. C. McPhedran, “Power losses in highly conducting lamellar gratings,” J. Mod. Opt. 34, 511–538 (1987). [CrossRef]
  48. C. C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microwave Theory Tech. MTT-21, 1–6 (1973). [CrossRef]
  49. J. P. Hugonin and P. Lalanne, Reticolo Software for Grating Analysis (Institut d’Optique, 2005).
  50. F. I. Baida, Y. Poujet, J. Salvi, D. Van Labeke, and B. Guizal, “Extraordinary transmission beyond the cut-off through sub-λ annular aperture arrays,” Opt. Commun. 282, 1463–1466 (2009). [CrossRef]
  51. J. Gómez Rivas, C. Schotsch, P. Haring Bolivar and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306(R) (2003). [CrossRef]
  52. Y. H. Ye and J. Y. Zhang, “Middle-infrared transmission enhancement through periodically perforated metal films,” Appl. Phys. Lett. 84, 2977–2979 (2004). [CrossRef]
  53. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt. 2, 48–51 (2000). [CrossRef]
  54. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2, 262–267 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited