OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 4 — Apr. 1, 2010
  • pp: 873–877

Magnetically induced Mie resonance in a magnetic sphere suspended in a ferrofluid

Hem Bhatt, Rajesh Patel, and R. V. Mehta  »View Author Affiliations

JOSA A, Vol. 27, Issue 4, pp. 873-877 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (424 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Mie scattering functions for a magnetizable sphere whose relative refractive index is dependent on the externally applied magnetic field are computed for four different sizes of the sphere. It is found that Mie resonances are observed at certain critical fields when the incident light is polarized with its electric vector perpendicular to the applied field. The width of resonance as well as the critical fields shifts with the increase in size of the spheres. Results are compared with the experimentally observed scattering effects in a dispersion of magnetite spheres in a ferrofluid.

© 2010 Optical Society of America

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles
(290.2558) Scattering : Forward scattering
(290.5825) Scattering : Scattering theory
(290.5855) Scattering : Scattering, polarization

ToC Category:

Original Manuscript: January 4, 2010
Revised Manuscript: February 12, 2010
Manuscript Accepted: February 13, 2010
Published: March 25, 2010

Hem Bhatt, Rajesh Patel, and R. V. Mehta, "Magnetically induced Mie resonance in a magnetic sphere suspended in a ferrofluid," J. Opt. Soc. Am. A 27, 873-877 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Kreg, “Ludvig Lorenz and nineteenth century optical theory: the work of a great Danish scientist,” Appl. Opt. 30, 4686-4695 (1991).
  2. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann Phys. (Leipzig) 25, 376-445 (1908).
  3. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1980).
  4. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  5. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).
  6. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  7. K. Sakoda, Optical Properties of Photonic Crystals, 2nd ed. (Springer, 2001).
  8. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  9. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  10. J. Annopoulos, R. D. Meade, and N. J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).
  11. M. I. Tribelsky, S. Flach, A. E. Miroschnichenko, A. V. Gorbach, and Y. S. Krivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 043903 (2008). [CrossRef] [PubMed]
  12. A. E. Miroschnichenko, “Non-Rayleigh limit of the Lorenz-Mie solution and suppression of scattering by spheres of negative refractive index,” Phys. Rev. A 80, 013808 (2009). [CrossRef]
  13. R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006). [CrossRef] [PubMed]
  14. R. V. Mehta, R. J. Patel, and R. V. Upadhyay, “Direct observation of magnetically induced attenuation and enhancement of coherent backscattering of light,” Phys. Rev. B 74, 195127 (2006). [CrossRef]
  15. R. Lenke, R. Lehner, and G. Maret, “Magnetic-field effects on coherent backscattering of light in case of Mie spheres,” EPL 52, 620-626 (2000). [CrossRef]
  16. D. Lacoste and B. A. van Tigglen, “Coherent backscattering of light in a magnetic field,” Phys. Rev. E 61, 4556-4565 (2000). [CrossRef]
  17. A. S. Martinez and R. Maynard, “Faraday effect and multiple scattering of light,” Phys. Rev. B 50, 3714-3732 (1994). [CrossRef]
  18. M. Kerker, D. S. Wang, and G. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am. 73, 765-767 (1983). [CrossRef]
  19. F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “New effects in light scattering in disordered media and coherent backscattering cone: systems of magnetic particles,” Phys. Rev. Lett. 84, 1435-1438 (2000). [CrossRef] [PubMed]
  20. F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “Vanishing of energy transport velocity and diffusion constant of electromagnetic waves in disordered magnetic media,” Phys. Rev. Lett. 85, 5563-5566 (2000). [CrossRef]
  21. F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “Multiple scattering of electromagnetic waves in disordered magnetic media: localization parameter, energy transport velocity and diffusion constant,” Braz. J. Phys. 31, 65-70 (2001). [CrossRef]
  22. R. J. Tarento, K. H. Bennemann, P. Joyes, and J. Van de Walle, “Mie scattering of magnetic spheres,” Phys. Rev. E 69, 026606 (2004). [CrossRef]
  23. D. Lacoste, B. A. van Tiggelen, G. L. J. A. Rikken, and A. Sparenberg, “Optics of a Faraday-active Mie sphere,” J. Opt. Soc. Am. A 15, 1636-1642 (1998). [CrossRef]
  24. B. García-Cámara, F. Moreno, F. Gonzalez, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A 25, 327-334 (2008). [CrossRef]
  25. B. Garcia-Camara, F. Gonzalez, F. Moreno, and J. M. Saiz, “Exception for the zero-forwardscattering theory,” J. Opt. Soc. Am. A 25, 2875-2878 (2008). [CrossRef]
  26. H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge U. Press, 1992). [CrossRef]
  27. H. M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499-501 (1984). [CrossRef] [PubMed]
  28. H. Ikari, K. Okanshi, M. Tomita, and T. Ishidate, “Fluorescence MDR features of Eu3+ doped sol-gel TiO2 hydrate microspheres,” Opt. Mater. 30, 1323-1326 (2008). [CrossRef]
  29. T. Takahashi, S. Matsuo, H. Misawa, T. Karatsu, A. Kitamura, K. Kamada, and K. Ohta, “Morphology dependent resonant lasing of a dye-doped microsphere prepared by non-linear optical material,” Thin Solid Films 331, 298-302 (1998). [CrossRef]
  30. Y. F. Chen, S. Y. Yang, W. S. Tse, H. E. Horng, C. Hong, and H. C. Yang, “Thermal effect on the field-dependent refractive index of the magnetic fluid film,” Appl. Phys. Lett. 82, 3481-3484 (2003). [CrossRef]
  31. R. V. Mehta, R. J. Patel, B. Chudasama, R. V. Upadhyay, and S. P. Bhatnagar, “Field induced photonic bandgap in ferrodispersion” in IEE-Photonics Global 2008 Proceeding (2008), Vol. A, pp. A136-A138.
  32. S. Liu, J. Du, Z. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78, 155101 (2008). [CrossRef]
  33. S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Berger, F. Schmidt, and M. Wegner, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 999, 2-8 (2006).
  34. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505-1509 (1980). [CrossRef] [PubMed]
  35. R. Patel, “Induced optical anisotropy by nanomagnetic particles in nanofluids,” J. Opt. A, Pure Appl. Opt. 11, 125004 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited