OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 1194–1201

Phase space distributions tailored for dispersive media

Jonathan C. Petruccelli and Miguel A. Alonso  »View Author Affiliations

JOSA A, Vol. 27, Issue 5, pp. 1194-1201 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (801 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



New phase space distributions are proposed for describing pulse propagation in dispersive media for one spatial dimension. These distributions depend on time, position, and velocity, so that the pulse’s spatial propagation or temporal evolution is described by a free-particle-like transformation followed by integration over velocity. Examples are considered for approximate Lorentz-model dielectrics and metallic waveguides.

© 2010 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(260.2030) Physical optics : Dispersion
(320.5550) Ultrafast optics : Pulses
(070.7345) Fourier optics and signal processing : Wave propagation
(070.7425) Fourier optics and signal processing : Quasi-probability distribution functions

ToC Category:
Physical Optics

Original Manuscript: February 24, 2010
Manuscript Accepted: March 11, 2010
Published: April 30, 2010

Jonathan C. Petruccelli and Miguel A. Alonso, "Phase space distributions tailored for dispersive media," J. Opt. Soc. Am. A 27, 1194-1201 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Loughlin and L. Cohen, “A Wigner approximation method for wave propagation,” J. Acoust. Soc. Am. 118, 1268–1271 (2005). [CrossRef]
  2. J. Ojeda-Castañeda, J. Lancis, C. M. Gómez-Sarabia, V. Torres-Company, and P. Andrés, “Ambiguity function analysis of pulse train propagation: applications to temporal Lau filtering,” J. Opt. Soc. Am. A 24, 2268–2273 (2007). [CrossRef]
  3. P. Loughlin and L. Cohen, “Approximate wave function from approximate non-representable Wigner distributions,” J. Mod. Opt. 55, 3379–3387 (2008). [CrossRef]
  4. L. Cohen, P. Loughlin, and G. Okopal, “Exact and approximate moments of a propagating pulse,” J. Mod. Opt. 55, 3349–3358 (2008). [CrossRef]
  5. A. Papandreou-Suppappola, F. Hlawatsch, and G. Boudreaux-Bartels, “Quadratic time-frequency representations with scale covariance and generalized time-shift covariance: A unified framework for the affine, hyperbolic, and power classes,” Digit. Signal Process. 8, 3–48 (1998). [CrossRef]
  6. F. Hlawatsch, A. Papandreou-Suppappola, and G. Boudreaux-Bartels, “The power classes-quadratic time-frequency representations with scale covariance and dispersive time-shift covariance,” IEEE Trans. Signal Process. on 47, 3067–3083 (1999). [CrossRef]
  7. A. Papandreou-Suppappola, R. Murray, B. Iem, and G. Boudreaux-Bartels, “Group delay shift covariant quadratic time-frequency representations,” IEEE Trans. Signal Process. 49, 2549–2564 (2001). [CrossRef]
  8. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995), pp. 92–102.
  9. G. Okopal, P. Loughlin, and L. Cohen, “Dispersion-invariant features for classification,” J. Acoust. Soc. Am. 123, 832–841 (2008). [CrossRef] [PubMed]
  10. P. Loughlin and L. Cohen, “Wigner distributions local properties of dispersive pulses,” J. Mod. Opt. 49, 2645–2655 (2002). [CrossRef]
  11. T. J. M. Boyd and J. J. Sanderson, The Physics of Plasmas (Cambridge Univ. Press, 1995), p. 209.
  12. L. Dolin, “Beam description of weakly inhomogeneous wave fields,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 7, 559–562 (1964).
  13. A. Walther, “Radiometry and coherence,” J. Opt. Soc. Am. 58, 1256–1259 (1968). [CrossRef]
  14. K. B. Wolf, M. A. Alonso, and G. W. Forbes, “Wigner functions for Helmholtz wave fields,” J. Opt. Soc. Am. A 16, 2476–2487 (1999). [CrossRef]
  15. M. A. Alonso, “Radiometry and wide-angle wave fields. I. Coherent fields in two dimensions,” J. Opt. Soc. Am. A 18, 902–909 (2001). [CrossRef]
  16. M. A. Alonso, “Radiometry and wide-angle wave fields. II. Coherent fields in three dimensions,” J. Opt. Soc. Am. A 18, 910–918 (2001). [CrossRef]
  17. S. Cho, J. C. Petruccelli, and M. A. Alonso, “Wigner functions for paraxial and nonparaxial fields,” J. Mod. Opt. 56, 1843–1852 (2009). [CrossRef]
  18. L. E. Vicent and M. A. Alonso, “Generalized radiometry as a tool for the propagation of partially coherent fields,” Opt. Commun. 207, 101–112 (2002). [CrossRef]
  19. H. Lajunen, J. Tervo, J. Turunen, P. Vahimaa, and F. Wyrowski, “Spectral coherence properties of temporally modulated stationary light sources,” Opt. Express 11, 1894–1899 (2003). [CrossRef] [PubMed]
  20. B. J. Davis, “Observable coherence theory for statistically periodic fields,” Phys. Rev. A 76, 043843 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MOV (1031 KB)     
» Media 2: MOV (69 KB)     
» Media 3: MOV (730 KB)     
» Media 4: MOV (79 KB)     
» Media 5: MOV (1000 KB)     
» Media 6: MOV (99 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited