## Electromagnetic energy within magnetic spheres

JOSA A, Vol. 27, Issue 5, pp. 992-1001 (2010)

http://dx.doi.org/10.1364/JOSAA.27.000992

Enhanced HTML Acrobat PDF (521 KB)

### Abstract

Consider that an incident plane wave is scattered by a homogeneous and isotropic magnetic sphere of finite radius. We determine, by means of the rigorous Mie theory, an exact expression for the time-averaged electromagnetic energy within this particle. For magnetic scatterers, we find that the value of the average internal energy in the resonance picks is much larger than the one associated with a scatterer with the same nonmagnetic medium properties. This result is valid even, and especially, for low size parameter values. Expressions for the contributions of the radial and angular field components to the internal energy are determined. For the analytical study of the weak absorption regime, we derive an exact expression for the absorption cross section in terms of the magnetic Mie internal coefficients. We stress that, although the electromagnetic scattering by particles is a well-documented topic, almost no attention has been devoted to magnetic scatterers. Our aim is to provide some new analytical results, which can be used for magnetic particles, and emphasize the unusual properties of the magnetic scatters, which could be important in some applications.

© 2010 Optical Society of America

**OCIS Codes**

(290.0290) Scattering : Scattering

(290.4020) Scattering : Mie theory

(290.5850) Scattering : Scattering, particles

(290.5825) Scattering : Scattering theory

**ToC Category:**

Scattering

**History**

Original Manuscript: October 19, 2009

Revised Manuscript: January 18, 2010

Manuscript Accepted: January 20, 2010

Published: April 7, 2010

**Citation**

Tiago José Arruda and Alexandre Souto Martinez, "Electromagnetic energy within magnetic spheres," J. Opt. Soc. Am. A **27**, 992-1001 (2010)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-5-992

Sort: Year | Journal | Reset

### References

- M. Kerker, D. S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am. 73, 765-767 (1983). [CrossRef]
- F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “New effects in light scattering in disordered media and coherent backscattering cone: system of magnetic particles,” Phys. Rev. Lett. 84, 1435-1438 (2000). [CrossRef] [PubMed]
- F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “Vanishing of energy transport and diffusion constant of electromagnetic waves in disordered magnetic media,” Phys. Rev. Lett. 85, 5563-5566 (2000). [CrossRef]
- F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “Multiple scattering of electromagnetic waves in disordered magnetic media: localization parameter, energy transport velocity and diffusion constant,” Braz. J. Phys. 31, 65-70 (2001). [CrossRef]
- F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “Electromagnetic scattering by small magnetic particles,” J. Magn. Magn. Mater. 226-230, 1951-1953 (2001). [CrossRef]
- C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
- H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1980).
- P. W. Barber, Light Scattering by Particles: Computational Methods (World Scientific, 1990). [CrossRef]
- M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).
- J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
- M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Effect of the magnetic permeability on photonic band gaps,” Phys. Rev. B 56, 959-962 (1997). [CrossRef]
- P. Chen, R. X. Wu, J. Xu, A. M. Jiang, and X. Y. Ji, “Effects of magnetic anisotropy on the stop band of ferromagnetic electromagnetic band gap materials,” J. Phys. Condens. Matter 19, 106205 (2007). [CrossRef]
- Z. F. Lin and S. T. Chui, “Manipulating electromagnetic radiation with magnetic photonic crystals,” Opt. Lett. 32, 2288-2290 (2007). [CrossRef] [PubMed]
- S. Liu, J. Du, Z. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78, 155101 (2008). [CrossRef]
- Z. F. Lin and S. T. Chui, “Electromagnetic scattering by optically anisotropic magnetic particles,” Phys. Rev. E 69, 056614 (2004). [CrossRef]
- R.-J. Tarento, K.-H. Bennemann, P. Joyes, and J. Van de Walle, “Mie scattering of magnetic spheres,” Phys. Rev. E 69, 026606 (2004). [CrossRef]
- A. Bott and W. Zdunkowski, “Electromagnetic energy within dielectric spheres,” J. Opt. Soc. Am. A 4, 1361-1365 (1987). [CrossRef]
- A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
- D. J. Griffiths, Introduction to Electrodynamics, 3rd ed. (Prentice Hall, 1999).
- G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge Mathematical Library, 1958).
- G. B. Arfken and H. J. Weber, Essentials of Math Methods for Physicists (Academic, 2003).
- P. Chyýlek, J. D. Pendleton, and R. G. Pinnick, “Internal and near-surface scattered field of a spherical particle at resonant conditions,” Appl. Opt. 24, 3940-3942 (1985). [CrossRef]
- D. Q. Chowdhury, S. C. Hill, and P. W. Barber, “Time dependence of internal intensity of a dielectric sphere on and near resonance,” J. Opt. Soc. Am. A 9, 1364-1373 (1992). [CrossRef]
- M. I. Mishchenko and A. A. Lacis, “Manifestations of morphology-dependent resonances in Mie scattering matrices,” Appl. Math. Comput. 116, 167-179 (2000). [CrossRef]
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1970).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.