OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 11 — Nov. 1, 2011
  • pp: 2218–2225

Performance enhancements to absorbance-modulation optical lithography. II. Plasmonic superlenses

John E. Foulkes and Richard J. Blaikie  »View Author Affiliations


JOSA A, Vol. 28, Issue 11, pp. 2218-2225 (2011)
http://dx.doi.org/10.1364/JOSAA.28.002218


View Full Text Article

Enhanced HTML    Acrobat PDF (1172 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The ability to improve the transmission and intensity profiles in absorbance-modulation optical lithography (AMOL) [ J. Opt. Soc. Am. A 23, 2290 (2006) and Phys. Rev. Lett. 98, 043905 (2007)] through the introduction of a plasmonic metal layer is investigated. In this part of the work, a plasmonic layer is placed between the absorbance-modulation layer and the photoresist layer. Transmission through this layer is possible due to the ability of thin plasmonic layers to act as near-field analogues of negative refraction materials. The superlens performance is best with a thin layer of 10 20 nm , although this causes a full width at half-maximum increase of 50 % . The introduction of the plasmonic layers allows dichroic filtering of the two wavelengths, with a difference of a factor of 10 in the transmitted intensity ratio, reducing undesirable exposure of the resist. The presented work demonstrates that a plasmonic layer can be interfaced with an AMOL system, but that further optimization and material development are needed to allow substantial performance improvements.

© 2011 Optical Society of America

OCIS Codes
(110.5220) Imaging systems : Photolithography
(240.6680) Optics at surfaces : Surface plasmons
(110.4235) Imaging systems : Nanolithography
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Imaging Systems

History
Original Manuscript: August 5, 2011
Manuscript Accepted: August 26, 2011
Published: October 5, 2011

Citation
John E. Foulkes and Richard J. Blaikie, "Performance enhancements to absorbance-modulation optical lithography. II. Plasmonic superlenses," J. Opt. Soc. Am. A 28, 2218-2225 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-11-2218


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Menon and H. I. Smith, “Absorbance-modulation optical lithography,” J. Opt. Soc. Am. A 23, 2290–2294 (2006). [CrossRef]
  2. R. Menon, H. Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98, 043905 (2007). [CrossRef] [PubMed]
  3. J. E. Foulkes and R. J. Blaikie, “Performance enhancements to absorbance modulation optical lithography. I. Plasmonic reflector layers,” J. Opt. Soc. Am. A 28, 2209–2217 (2011). [CrossRef]
  4. V. G. Veselago, “Electrodynamics of substances with simultaneously negative values of sigma and mu,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  6. M. C. K. Wiltshire, J. B. Pendry, and J. V. Hajnal, “Sub-wavelength imaging at radio frequency,” J. Phys. Condens. Matter 18, L315–L321 (2006). [CrossRef]
  7. R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001). [CrossRef]
  8. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79(2001). [CrossRef] [PubMed]
  9. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134(2005). [CrossRef] [PubMed]
  10. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef] [PubMed]
  11. P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. N. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010). [CrossRef]
  12. Z. W. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003). [CrossRef]
  13. P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials” Laser Photon. Rev. 4, 795–808 (2010). [CrossRef]
  14. C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A 25, 911–918 (2008). [CrossRef]
  15. M. Scholer and R. J. Blaikie, “Simulations of surface roughness effects in planar superlenses,” J. Opt. A 11, 105503 (2009). [CrossRef]
  16. M. Scholer and R. J. Blaikie, “Resonant surface roughness interactions in planar superlenses,” Microelectron. Eng. 87, 887–889(2010). [CrossRef]
  17. T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324, 917–921 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited