OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 2 — Feb. 1, 2011
  • pp: 238–244

Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates

Thomas Weiss, Nikolay A. Gippius, Sergei G. Tikhodeev, Gérard Granet, and Harald Giessen  »View Author Affiliations


JOSA A, Vol. 28, Issue 2, pp. 238-244 (2011)
http://dx.doi.org/10.1364/JOSAA.28.000238


View Full Text Article

Enhanced HTML    Acrobat PDF (899 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A very stable approach for finding optical resonances is to solve an eigenvalue equation that evolves from the linearization of the inverse scattering matrix. In this paper, we show how to use this approach in the Fourier modal method so that advanced coordinate transformation methods such as adaptive spatial resolution and matched coordinates can be included. Furthermore, we present a way that accelerates the computation of the inverse scattering matrix tremendously and allows the derivation of the resonant field distribution inside the structure efficiently.

© 2011 Optical Society of America

OCIS Codes
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(160.3918) Materials : Metamaterials
(160.5298) Materials : Photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Materials

History
Original Manuscript: October 27, 2010
Manuscript Accepted: November 19, 2010
Published: January 28, 2011

Citation
Thomas Weiss, Nikolay A. Gippius, Sergei G. Tikhodeev, Gérard Granet, and Harald Giessen, "Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates," J. Opt. Soc. Am. A 28, 238-244 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-2-238


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. F. Krauss, R. M. DeLaRue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature (London) 383, 699–702 (1996). [CrossRef]
  2. D. N. Chigrin, A. V. Lavrinenko, and C. M. S. Torres, “Nanopillars photonic crystal waveguides,” Opt. Express 12, 617–622 (2004). [CrossRef] [PubMed]
  3. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006). [CrossRef]
  4. M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photon. 2, 614–617 (2008). [CrossRef]
  5. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon. 3, 157–162 (2009). [CrossRef]
  6. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009). [CrossRef] [PubMed]
  7. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996). [CrossRef]
  8. G. Granet and B. Guizal, “Efficient implementation of the coupled-waved method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996). [CrossRef]
  9. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876(1996). [CrossRef]
  10. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767(1997). [CrossRef]
  11. L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A: Pure Appl. Opt. 5, 345–355 (2003). [CrossRef]
  12. E. Popov and M. Nevière, “Maxwell equations in Fourier space: Fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media,” J. Opt. Soc. Am. A 18, 2886–2894(2001). [CrossRef]
  13. G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16, 2510–2516 (1999). [CrossRef]
  14. G. Granet and J. P. Plumey, “Parametric formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. A: Pure Appl. Opt. 4, S145–S149 (2002). [CrossRef]
  15. T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A 24, 2880–2890(2007). [CrossRef]
  16. P. Götz, T. Schuster, K. Frenner, S. Rafler, and W. Osten, “Normal vector method for the RCWA with automated vector field generation,” Opt. Express 16, 17295–17301 (2008). [CrossRef] [PubMed]
  17. T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, and H. Giessen, “Matched coordinates and adaptive spatial resolution in the Fourier modal method,” Opt. Express 17, 8051–8061(2009). [CrossRef] [PubMed]
  18. S. Essig and K. Busch, “Generation of adaptive coordinates and their use in the Fourier modal method,” Opt. Express 18, 23258–23274 (2010). [CrossRef] [PubMed]
  19. B. Bai and J. Turunen, “Fourier modal method for the analysis of second-harmonic generation in two-dimensionally periodic structures containing anisotropic materials,” J. Opt. Soc. Am. B 24, 1105–1112 (2007). [CrossRef]
  20. T. Paul, C. Rockstuhl, and F. Lederer, “A numerical approach for analyzing higher harmonic generation in multilayer nanostructures,” J. Opt. Soc. Am. B 27, 1118–1130 (2010). [CrossRef]
  21. N. A. Gippius, S. G. Tikhodeev, and T. Ishihara, “Optical properties of photonic crystal slabs with an asymmetrical unit cell,” Phys. Rev. B 72, 45138 (2005). [CrossRef]
  22. N. A. Gippius and S. G. Tikhodeev, “Application of the scattering matrix method for calculating the optical properties of metamaterials,” Phys. Usp. 52, 967–971 (2009). [CrossRef]
  23. N. A. Gippius, T. Weiss, S. G. Tikhodeev, and H. Giessen, “Resonant mode coupling of optical resonances in stacked nanostructures,” Opt. Express 18, 7569–7574 (2010). [CrossRef] [PubMed]
  24. H. Yala, B. Guizal, and D. Felbacq, “Fourier modal method with spatial adaptive resolution for structures comprising homogeneous layers,” J. Opt. Soc. Am. A 26, 2567–2570 (2009). [CrossRef]
  25. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006). [CrossRef] [PubMed]
  26. T. Vallius and M. Honkanen, “Reformulation of the Fourier modal method with adaptive spatial resolution: Application to multilevel profiles,” Opt. Express 10, 24–34 (2002). [PubMed]
  27. T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, and H. Giessen, “Calculation of complex shapes in the Fourier modal method through the concept of coordinate transformations,” AIP Conf. Proc. 1176, 163–165 (2009). [CrossRef]
  28. G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71, 195108 (2005). [CrossRef]
  29. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  30. D. M. Whittaker and I. S. Culshaw, “Scattering matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999). [CrossRef]
  31. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 45102 (2002). [CrossRef]
  32. G. Gantzounis and N. Stefanou, “Layer-multiple-scattering method for photonic crystals of nonspherical particles,” Phys. Rev. B 73, 035115 (2006). [CrossRef]
  33. L. Li, “Note on the S-matrix propagation algorithm,” J. Opt. Soc. Am. A 20, 655–660 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited