OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 3 — Mar. 1, 2011
  • pp: 314–317

Q-factor enhancement in a one-dimensional photonic crystal cavity with embedded planar plasmonic metamaterials

Yunhui Li, Xuecheng Tao, Hong Chen, and Wing Yim Tam  »View Author Affiliations

JOSA A, Vol. 28, Issue 3, pp. 314-317 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (458 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report Q-factor enhancement in a one-dimensional (1D) photonic crystal (PC) cavity by embedding elec tromagnetic-induced-transparency (EIT) planar plasmonic metamaterials in the cavity. Microwave experiments show tenfold Q-factor enhancements, confirming the numerical simulations. More importantly, the Q-factor enhancement is mainly due to both the longitudinal and lateral confinements contributed by the 1D PC cavity and the planar EIT metamaterials, respectively. The combined PC-EIT structure with a prominent cavity figure of merit may find new applications in nonlinear optics, cavity quantum electrodynamics, and low-threshold lasers.

© 2011 Optical Society of America

OCIS Codes
(160.3918) Materials : Metamaterials
(140.3945) Lasers and laser optics : Microcavities
(050.5298) Diffraction and gratings : Photonic crystals
(250.5403) Optoelectronics : Plasmonics

Original Manuscript: September 14, 2010
Revised Manuscript: December 18, 2010
Manuscript Accepted: December 20, 2010
Published: February 10, 2011

Yunhui Li, Xuecheng Tao, Hong Chen, and Wing Yim Tam, "Q-factor enhancement in a one-dimensional photonic crystal cavity with embedded planar plasmonic metamaterials," J. Opt. Soc. Am. A 28, 314-317 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  2. A. Vukics, W. Niedenzu, and H. Ritsch, “Cavity nonlinear optics with few photons and ultracold quantum particles,” Phys. Rev. A 79, 013828 (2009). [CrossRef]
  3. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004). [CrossRef] [PubMed]
  4. T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94, 141110(2009). [CrossRef]
  5. A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084-12089 (2008). [CrossRef] [PubMed]
  6. Y. Nazirizadeh, U. Lemmer, and M. Gerken, “Experimental quality factor determination of guided-mode resonance in photonic crystal slabs,” Appl. Phys. Lett. 93, 261110 (2008). [CrossRef]
  7. J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, D. Litvinov, D. Gerthsen, D. Z. Hu, D. M. Schaadt, M. Wegener, U. Khankhoje, and A. Scherer, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostruct. Fundam. Appl. 8, 1-6(2010). [CrossRef]
  8. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009). [CrossRef]
  9. T. Xu, M. S. Wheeler, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, “The influence of material absorption on the quality factor of photonic crystal cavities,” Opt. Express 17, 8343-8348 (2009). [CrossRef] [PubMed]
  10. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999). [CrossRef]
  11. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005). [CrossRef]
  12. G. Muller, M. Muller, A. Wicht, R. H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A 56, 2385-2389 (1997). [CrossRef]
  13. M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, “Intracavity electromagnetically induced transparency,” Opt. Lett. 23, 295-297 (1998). [CrossRef]
  14. H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, “Cavity-linewidth narrowing by means of electromagnetically induced transparency,” Opt. Lett. 25, 1732-1734 (2000). [CrossRef]
  15. M. Soljacic, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E 71, 026602 (2005). [CrossRef]
  16. V. G. Arkhipkin and S. A. Myslivets, “Effect of electromagnetically induced transparency on the spectrum of defect modes in a one dimensional photonic crystal,” Quantum Electron. 39, 157-162 (2009). [CrossRef]
  17. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008). [CrossRef] [PubMed]
  18. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008). [CrossRef] [PubMed]
  19. P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009). [CrossRef] [PubMed]
  20. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758-762 (2009). [CrossRef] [PubMed]
  21. D. Goldring, U. Levy, and D. Mendlovic, “Highly dispersive micro-ring resonator based on one dimensional photonic crystal waveguide design and analysis,” Opt. Express 15, 3156-3168(2007). [CrossRef] [PubMed]
  22. D. Goldring, U. Levy, I. E. Dotan, A. Tsukernik, M. Oksman, I. Rubin, Y. David, and D. Mendlovic, “Experimental measurement of quality factor enhancement using slow light modes in one dimensional photonic crystal,” Opt. Express 16, 5585-5595(2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited