OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 3 — Mar. 1, 2011
  • pp: 410–419

Complete polarization state generator with one variable retarder and its application for fast and sensitive measuring of two-dimensional birefringence distribution

Michael Shribak  »View Author Affiliations


JOSA A, Vol. 28, Issue 3, pp. 410-419 (2011)
http://dx.doi.org/10.1364/JOSAA.28.000410


View Full Text Article

Enhanced HTML    Acrobat PDF (685 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The complete polarization state generator (PSG), which consists of one rotatable polarizer and one variable retarder with a quarter-wave plate, is introduced. The orientation angle of its output polarization ellipse equals half of the retardance of the variable retarder, and the ellipticity angle corresponds to the polarizer azimuth. The PSG is employed in the quantitative orientation-independent differential polarization microscope, which uses polarized light states with the same ellipticity and different orientation angles. Image processing algorithms using three or four frames are described.

© 2011 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(180.0180) Microscopy : Microscopy
(230.5440) Optical devices : Polarization-selective devices
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Physical Optics

History
Original Manuscript: June 22, 2010
Revised Manuscript: December 30, 2010
Manuscript Accepted: January 5, 2011
Published: February 25, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Michael Shribak, "Complete polarization state generator with one variable retarder and its application for fast and sensitive measuring of two-dimensional birefringence distribution," J. Opt. Soc. Am. A 28, 410-419 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-3-410


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. S. Hauge, “Recent development in instrumentation in ellipsometry,” Surface Sci. 96, 108–140 (1980). [CrossRef]
  2. D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003).
  3. R. A. Chipman, “Polarimetry,” in Handbook of Optics, Third Edition, Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments, M.Bass and V. N. Mahajan, eds. (McGraw-Hill, 2009), pp. 15.1–15.46.
  4. E. Collett, Polarized Light in Fiber Optics (PolaWave, 2003).
  5. M. Shribak, “Polarization,” in Handbook of Optical Metrology: Principles and Applications, T.Yoshizawa, ed. (CRC, 2009), pp. 339–350.
  6. N. H. Hartshorne and A. Stuart, Crystals and the Polarizing Microscope, 4th ed. (Edward Arnold, 1970).
  7. M. Noguchi, T. Ishikawa, M. Ohno, and S. Tachihara, “Measurement of 2D birefringence distribution,” Proc. SPIE 1720, 367–378 (1992). [CrossRef]
  8. Y. Otani, T. Shimada, T. Yoshizawa, and N. Umeda, “Two-dimensional birefringence measurement using the phase shifting technique,” Opt. Eng. 33, 1604–1609 (1994). [CrossRef]
  9. J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimeter,” Opt. Eng. 34, 1558–1568 (1995). [CrossRef]
  10. M. Shribak, “Device for measuring birefringence of reflecting optical data carrier,” USSR patent 1414097 (17 March 1986).
  11. M. Shribak, “Compensation method of measuring birefringence,” Sov. J. Opt. Technol. 60, 546–549 (1993).
  12. M. Shribak, Y. Otani, and T. Yoshizawa, “Autocollimation polarimeter for measuring two-dimensional distribution of birefringence,” Opt. Spectrosc. 89, 155–159 (2000). [CrossRef]
  13. T. Yamaguchi and H. Hasunuma, “A quick response recording ellipsometer,” Sci. Light 16, 64–71 (1967).
  14. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier Science, 1987).
  15. R. Oldenbourg and G. Mei, “Polarized light microscopy,” U.S. patent 5,521,705 (12 May 1994).
  16. G. Mei and R. Oldenbourg, “Fast imaging polarimetry with precision universal compensator,” Proc. SPIE 2265, 29–39 (1994). [CrossRef]
  17. M. Shribak and R. Oldenbourg, “Retardance measurement system and method,” U.S. patent 7,202,950 (8 July 2003).
  18. M. Shribak and R. Oldenbourg, “Retardance measurement system and method,” U.S. patent 7,239,388 (8 July 2003).
  19. M. Shribak and R. Oldenbourg, “Retardance measurement system and method,” U.S. patent 7,372,567 (8 July 2003).
  20. M. Shribak and R. Oldenbourg, “Techniques for fast and sensitive measurements of two-dimensional birefringence distributions,” Appl. Opt. 42, 3009–3017 (2003). [CrossRef]
  21. S. R. Davis, R. J. Uberna, and R. A. Herke, “Retardance sweep polarimeter and method,” U.S. patent 6,744,509 (20 August 2002).
  22. D. Lara and C. Dainty, “Double-pass axially resolved confocal Mueller matrix imaging polarimetry,” Opt. Lett. 30, 2879–2881(2005). [CrossRef]
  23. B. Laude-Boulesteix, A. De Martino, B. Drevillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43, 2824–2832 (2004). [CrossRef]
  24. M. Mujat and A. Dogariu, “Real-time measurement of the polarization transfer function,” Appl. Opt. 40, 34–44 (2001). [CrossRef]
  25. M. Mujat, N. Iftimia, R. D. Ferguson, and D. X. Hammer, “Mueller matrix microscopy,” in Biomedical Optics (BIOMED)/Digital Holography and Three-Dimensional Imaging (DH), CD-ROM (Optical Society of America, 2010), paper BSuD60.
  26. A. De Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28, 616–618 (2003). [CrossRef]
  27. E. Garcia-Caurel, A. De Martino, and B. Drevillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” Thin Solid Films 455–456, 120–123 (2004). [CrossRef]
  28. A. Jaulin and L. Bigue, “High speed partial Stokes imaging using a ferroelectric liquid crystal modulator,” J. Eur. Opt. Soc. Rapid Publ. 3, 080191 (2008). [CrossRef]
  29. D. A. Holmes, “Wave optics theory of rotary compensators,” J. Opt. Soc. Am. 54, 1340–1347 (1964). [CrossRef]
  30. F. Rinne and M. Berek, Anleitung zu Optischen Untersuclhungen mit dem Polarizationsmikroskop (Schweizerbart’sche Verlagsbuchhandlung, 1953).
  31. M. Shribak, “Use of gyrotropic birefringent plate as quarter-wave plate,” Sov. J. Opt. Technol. 53, 443–446 (1986).
  32. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).
  33. T. Scharf, Polarized Light in Liquid Crystals and Polymers (Wiley, 2007).
  34. M. Shribak, S. Inoué, and R. Oldenbourg, “Polarization aberrations caused by differential transmission and phase shift in high NA lenses: theory, measurement and rectification,” Opt. Eng. 41, 943–954 (2002). [CrossRef]
  35. R. Oldenbourg and M. Shribak, “Microscopes,” in Handbook of Optics, Third Edition, Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments, M.Bass and V.N.Mahajan, eds. (McGraw-Hill, 2009), pp. 28.1–28.62.
  36. E. D. Salmon and P. Tran, “High resolution video-enhanced differential-interference contrast (VE-DIC) light microscopy,” Meth. Cell Biol. 56, 153–185 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited