OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 502–510

Source-model technique analysis of electromagnetic scattering by surface grooves and slits

Konstantin Trotskovsky and Yehuda Leviatan  »View Author Affiliations

JOSA A, Vol. 28, Issue 4, pp. 502-510 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1089 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A computational tool, based on the source-model technique (SMT), for analysis of electromagnetic wave scattering by surface grooves and slits is presented. The idea is to use a superposition of the solution of the unperturbed problem and local corrections in the groove/slit region (the grooves and slits are treated as perturbations). In this manner, the solution is obtained in a much faster way than solving the original problem. The proposed solution is applied to problems of grooves and slits in otherwise planar or periodic surfaces. Grooves and slits of various shapes, both smooth ones as well as ones with edges, empty or filled with dielectric material, are considered. The obtained results are verified against previously published data.

© 2011 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(260.2110) Physical optics : Electromagnetic optics
(290.0290) Scattering : Scattering
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: September 9, 2010
Revised Manuscript: December 7, 2010
Manuscript Accepted: December 31, 2010
Published: March 4, 2011

Konstantin Trotskovsky and Yehuda Leviatan, "Source-model technique analysis of electromagnetic scattering by surface grooves and slits," J. Opt. Soc. Am. A 28, 502-510 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Alavikia and O. M. Ramahi, “Finite-element solution of the problem of scattering from cavities in metallic screens using the surface integral equation as a boundary constraint,” J. Opt. Soc. Am. A 26, 1915–1925 (2009). [CrossRef]
  2. O. T. Janssen, H. P. Urbach, and G. W. ’t Hooft, “On the phase of plasmons excited by slits in a metal film,” Opt. Express 14, 11823–11832 (2006). [CrossRef] [PubMed]
  3. Y. Xie, A. Zakharian, J. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12, 61066121 (2004). [CrossRef] [PubMed]
  4. D. A. Thomas and H. P. Hughes, “Enhanced optical transmission through a subwavelength 1D aperture,” Solid State Commun. 129, 519–524 (2004). [CrossRef]
  5. L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405(2005). [CrossRef]
  6. S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies,” J. Opt. A Pure Appl. Opt. 7, S159–S164 (2005). [CrossRef]
  7. Y. Shifman and Y. Leviatan, “Scattering by a groove in a conducting plane-a PO-MoM hybrid formulation and wavelet analysis,” IEEE Trans. Antennas Propag. 49, 1807–1811 (2001). [CrossRef]
  8. Y. Tretiakov and G. W. Pan, “Coifman wavelets in electromagnetic wave scattering by a groove in conducting plane,” Prog. Electromagn. Res. PIER. 45, 1–20 (2004). [CrossRef]
  9. J. Bravo-Abad, L. Martín-Moreno, and F. García-Vidal, “Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E 69 (2004). [CrossRef]
  10. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001). [CrossRef] [PubMed]
  11. S. H. Kang, H. J. Eom, and T. J. Park, “TM scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Microwave Theory Tech. 41, 895–899 (1993). [CrossRef]
  12. F. García-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A Pure Appl. Opt. 7, S97–S101 (2005). [CrossRef]
  13. Y. Liu, H. Shi, C. Wang, C. Du, and X. Luo, “Multiple directional beaming effect of metallic subwavelength slit surrounded by periodically corrugated grooves,” Opt. Express 16, 4487–4493(2008). [CrossRef] [PubMed]
  14. L. Martín-Moreno, F. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003). [CrossRef] [PubMed]
  15. M. A. Basha, S. K. Chaudhuri, S. Safavi-Naeini, and H. J. Eom, “Rigorous formulation for electromagnetic plane-wave scattering from a general-shaped groove in a perfectly conducting plane: reply to comment,” J. Opt. Soc. Am. A 25, 1167–1168(2008). [CrossRef]
  16. Y. Leviatan and A. Boag, “Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies-theory and numerical solution,” IEEE Trans. Antennas Propag. 36, 1722–1734 (1988). [CrossRef]
  17. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech, 1990).
  18. D. I. Kaklamani and H. T. Anastassiu, “Aspects of the method of auxiliary sources (MAS) in computational electromagnetics,” IEEE Antennas Propag. Mag. 44, 48–64 (2002). [CrossRef]
  19. O. M. Bucci, G. D’Elia, and M. Santojanni, “Non-redundant implementation of method of auxiliary sources for smooth 2D geometries,” Electron. Lett. 41, 1203–1205 (2005). [CrossRef]
  20. G. Tayeb and S. Enoch, “Combined fictitious-sources-scattering-matrix method,” J. Opt. Soc. Am. A 21, 1417–1423(2004). [CrossRef]
  21. D. Maystre, M. Saillard, and G. Tayeb, “Special methods of wave diffraction,” in Scattering: Scattering and Inverse Scattering in Pure and Applied Science, E.R.Pike and P.C.Sabatier, eds. (Academic, 2001), Chap. 1.5.6.
  22. G. Fairweather and A. Karageorghis, “The method of fundamental solutions for elliptic boundary value problems,” Adv. Comput. Math. 9, 69–95 (1998). [CrossRef]
  23. Y. Leviatan, A. Boag, and A. Boag, “Analysis of TE scattering from dielectric cylinders using a multifilament magnetic current model,” IEEE Trans. Antennas Propag. 36, 1026–1031 (1988). [CrossRef]
  24. A. Boag and Y. Leviatan, “Analysis of two-dimensional electromagnetic scattering from nonplanar periodic surfaces using a strip current model,” IEEE Trans. Antennas Propag. 37, 1437–1446 (1989). [CrossRef]
  25. S. Eisler and Y. Leviatan, “Analysis of electromagnetic scattering from metallic and penetrable cylinders with edges using a multifilament current model,” IEE Proc. H: Microwaves, Antennas Propag. 136, 431–438 (1989). [CrossRef]
  26. E. Erez and Y. Leviatan, “Current-model analysis of electromagnetic scattering from objects containing a variety of length-scales,” J. Opt. Soc. Am. A 11, 1500–1504 (1994). [CrossRef]
  27. Y. Leviatan, Z. Baharav, and E. Heyman, “Analysis of electromagnetic scattering using arrays of fictitious sources,” IEEE Trans. Antennas Propag. 43, 1091–1098 (1995). [CrossRef]
  28. A. Ludwig and Y. Leviatan, “Analysis of band-gap characteristics of two-dimensional periodic structures using the source-model technique,” J. Opt. Soc. Am. A 20, 1553–1562(2003). [CrossRef]
  29. A. Ludwig and Y. Leviatan, “Analysis of arbitrary defects in photonic crystals by use of the source-model technique,” J. Opt. Soc. Am. A 21, 1334–1343 (2004). [CrossRef]
  30. A. Ludwig and Y. Leviatan, “Time-domain analysis of band-gap characteristics of two-dimensional periodic structures by use of a source-model technique,” J. Opt. Soc. Am. A 25, 437–451(2008). [CrossRef]
  31. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001). [CrossRef]
  32. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002). [CrossRef] [PubMed]
  33. J. Jin and J. L. Volakis, “TM scattering by an inhomogeneously filled aperture in a thick conducting plane,” IEE Proc. H: Microwaves, Antennas Propag. 137, 153–159 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited