OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 850–858

Optical trapping of microrods: variation with size and refractive index

Stephen H. Simpson and Simon Hanna  »View Author Affiliations

JOSA A, Vol. 28, Issue 5, pp. 850-858 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1661 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical traps can be characterized in terms of two simple parameters: the stiffness, given by the gradient of the force at mechanical equilibrium, and the strength, as expressed by the maximum restoring force available for displacement in a given direction. We present numerical calculations of these quantities for dielectric microrods of varying radius and refractive index held horizontally in pairs of holographically generated Gaussian beams. The resulting variations are seen to be influenced by optical resonances, as well as by the relative sizes of the beam waist and rod diameter. In addition, it is shown that trapping in these systems is sensitive to the polarization state of the incident field; i.e., for certain rods, trapping will occur for beams polarized perpendicular to the long axis of the rod, but not for beams polarized parallel to the long axis. Finally, friction coefficients are evaluated and used to estimate the maximum rates at which the rods may be dragged through the ambient medium.

© 2011 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(290.5850) Scattering : Scattering, particles
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 6, 2011
Manuscript Accepted: February 15, 2011
Published: April 21, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Stephen H. Simpson and Simon Hanna, "Optical trapping of microrods: variation with size and refractive index," J. Opt. Soc. Am. A 28, 850-858 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. H. Simpson and S. Hanna, “Holographic optical trapping of microrods and nanowires,” J. Opt. Soc. Am. A 27, 1255–1264 (2010). [CrossRef]
  2. S. H. Simpson and S. Hanna, “Optical angular momentum transfer by Laguerre–Gaussian beams,” J. Opt. Soc. Am. A 26, 625–638 (2009). [CrossRef]
  3. S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24, 430–443 (2007). [CrossRef]
  4. R. Agarwal, K. Ladavac, Y. Roichman, G. H. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13, 8906–8912 (2005). [CrossRef] [PubMed]
  5. L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11, 023012(2009). [CrossRef]
  6. V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82, 829–831 (2003). [CrossRef]
  7. F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3d translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophotonics 3, 468–475 (2010). [CrossRef] [PubMed]
  8. C. Song, N.-T. Nguyen, and A. K. Asundi, “Optical alignment of a cylindrical object,” J. Opt. A Pure Appl. Opt. 11, 034008 (2009). [CrossRef]
  9. L. Ling, F. Zhou, L. Huang, and Z.-Y. Li, “Optical forces on arbitrary shaped particles in optical tweezers,” J. Appl. Phys. 108, 073110 (2010). [CrossRef]
  10. D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Optics 13, 044023 (2011). [CrossRef]
  11. E. H. Hauge and A. Martin-Löf, “Fluctuating hydrodynamics and Brownian motion,” J. Stat. Phys. 7, 259–281 (1973). [CrossRef]
  12. S. H. Simpson and S. Hanna, “Thermal motion of a holographically trapped SPM-like probe,” Nanotechnology 20, 395710(2009). [CrossRef] [PubMed]
  13. S. H. Simpson and S. Hanna, “First-order nonconservative motion of optically trapped nonspherical particles,” Phys. Rev. E 82, 031141 (2010). [CrossRef]
  14. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media, 2nd ed. (Noordhoff International, 1973).
  15. D. C. Benito, S. H. Simpson, and S. Hanna, “FDTD simulations of forces on particles during holographic assembly,” Opt. Express 16, 2942–2957 (2008). [CrossRef] [PubMed]
  16. J.-Q. Qin, X.-L. Wang, D. Jia, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, “FDTD approach to optical forces of tightly focused vector beams on metal particles,” Opt. Express 17, 8407–8416 (2009). [CrossRef] [PubMed]
  17. A.Taflove, ed., Advances in Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 1998).
  18. T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Calculation and optical measurement of laser trapping forces on non-spherical particles,” J. Quant. Spectrosc. Radiat. Transfer 70, 627–637 (2001). [CrossRef]
  19. T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468–471 (2001). [CrossRef]
  20. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoener, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A Pure Appl. Opt. 9, S196–S203 (2007). [CrossRef]
  21. S. H. Simpson and S. Hanna, “Numerical calculation of inter-particle forces arising in association with holographic assembly,” J. Opt. Soc. Am. A 23, 1419–1431 (2006). [CrossRef]
  22. S. H. Simpson, D. C. Benito, and S. Hanna, “Polarization-induced torque in optical traps,” Phys. Rev. A 76, 043408 (2007). [CrossRef]
  23. N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914(2007). [CrossRef]
  24. P. C. Chaumet, A. Rahmani, A. Sentenac, and G. W. Bryant, “Efficient computation of optical forces with the coupled dipole method,” Phys. Rev. E 72, 046708 (2005). [CrossRef]
  25. P. C. Chaumet and C. Billaudeau, “Coupled dipole method to compute optical torque: application to a micropropeller,” J. Appl. Phys. 101, 023106 (2007). [CrossRef]
  26. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  27. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499(1994). [CrossRef]
  28. A. Greenbaum, Iterative Methods for Solving Linear Systems (SIAM, 1997). [CrossRef]
  29. R. W. Freund, “Conjugate gradient-type methods for linear-systems with complex symmetrical coefficient matrices,” SIAM J. Sci. Statist. Comput. 13, 425–448 (1992). [CrossRef]
  30. J. J. Goodman, B. T. Draine, and P. J. Flatau, “Application of fast Fourier transform techniques to the discrete-dipole approximation,” Opt. Lett. 16, 1198–1200 (1991). [CrossRef] [PubMed]
  31. M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proc. IEEE 93, 216–231 (2005). [CrossRef]
  32. C. J. R. Sheppard and S. Saghafi, “Electromagnetic Gaussian beams beyond the paraxial approximation,” J. Opt. Soc. Am. A 16, 1381–1386 (1999). [CrossRef]
  33. A. L. Cullen and P. K. Yu, “Complex source-point theory of the electromagnetic open resonator,” Proc. R. Soc. London Series A 366, 155–171 (1979). [CrossRef]
  34. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Programming(Cambridge Univ. Press, 2007), 3rd ed.
  35. J. M. Garcia Bernal and J. G. Garcia de la Torre, “Transport-properties and hydrodynamic centers of rigid macromolecules with arbitrary shapes,” Biopolymers 19, 751–766 (1980). [CrossRef]
  36. B. Carrasco and J. Garcia de la Torre, “Hydrodynamic properties of rigid particles: comparison of different modeling and computational procedures,” Biophys. J. 76, 3044–3057 (1999). [CrossRef] [PubMed]
  37. J. Rotne and S. Prager, “Variational treatment of hydrodynamic interactions in polymers,” J. Chem. Phys. 50, 4831–4837 (1969). [CrossRef]
  38. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users Guide (SIAM, 1997). [CrossRef]
  39. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford Univ. Press, 1986).
  40. F. Perrin, “Mouvement Brownien d’un ellipsoide—I. Dispersion diélectrique pour des molécules ellipsoidales,” J. Phys. Radium 5, 497–511 (1934). [CrossRef]
  41. V. A. Bloomfield, “Survey of biomolecular hydrodynamics,” in Biophysics Textbook Online, Separations and Hydrodynamics, T.M.Schuster, ed. (Biophysical Society, 2000), Chap. 1, pp. 1–16.
  42. A. B. Stilgoe, T. A. Nieminen, G. Knoner, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers,” Opt. Express 16, 15039–15051 (2008). [CrossRef] [PubMed]
  43. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge Univ. Press, 1999). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited