OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 940–948

Illumination estimation via thin-plate spline interpolation

Lilong Shi, Weihua Xiong, and Brian Funt  »View Author Affiliations

JOSA A, Vol. 28, Issue 5, pp. 940-948 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (479 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thin-plate spline interpolation is used to interpolate the chromaticity of the color of the incident scene illumination across a training set of images. Given the image of a scene under unknown illumination, the chromaticity of the scene illumination can be found from the interpolated function. The resulting illumination-estimation method can be used to provide color constancy under changing illumination conditions and automatic white balancing for digital cameras. A thin-plate spline interpolates over a nonuniformly sampled input space, which in this case is a training set of image thumbnails and associated illumination chromaticities. To reduce the size of the training set, incremental k medians are applied. Tests on real images demonstrate that the thin-plate spline method can estimate the color of the incident illumination quite accurately, and the proposed training set pruning significantly decreases the computation.

© 2011 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1690) Vision, color, and visual optics : Color
(330.1710) Vision, color, and visual optics : Color, measurement
(330.1720) Vision, color, and visual optics : Color vision

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: October 6, 2010
Revised Manuscript: January 29, 2011
Manuscript Accepted: March 16, 2011
Published: April 29, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Lilong Shi, Weihua Xiong, and Brian Funt, "Illumination estimation via thin-plate spline interpolation," J. Opt. Soc. Am. A 28, 940-948 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. D. Knott, Interpolating Cubic Splines (Birkhauser, 2000). [CrossRef]
  2. F. L. Bookstein, “Principal warps: thin-plate splines and decomposition of deformations,” IEEE Trans. Pattern Anal. Mach. Intell. 11, 567–585 (1989). [CrossRef]
  3. V. Cardei, B. Funt, and K. Barnard, “Estimating the scene illumination chromaticity using a neural network,” J. Opt. Soc. Am. A 19, 2374–2386 (2002). [CrossRef]
  4. B. V. Funt and W. H. Xiong, “Estimating illumination chromaticity via Support Vector Regression,” J. Imaging Sci. Technol. 50, 341–348 (2006). [CrossRef]
  5. M. H. Davis, A. Khotanzad, D. Flamig, and S. Harms, “A physics-based coordinate transformation for 3-d image matching,” IEEE Trans. Med. Imaging 16, 317–328 (1997). [CrossRef] [PubMed]
  6. N. Arad and D. Reisfeld, “Image warping using few anchor points and radial functions,” Comput. Graph. Forum 14, 35–46(1995). [CrossRef]
  7. A. M. Bazen and S. H. Gerez, “Elastic minutiae matching by means of thin-plate spline models,” in Proceedings of 16th International Conference on Pattern Recognition (IEEE, 2002), pp. 985–988.
  8. W. Xiong and B. V. Funt, “Nonlinear RGB-to-XYZ mapping for device calibration,” in Proceedings of Imaging Science and Technology Thirteenth Color Imaging Conference (Society for Imaging Sciences and Technology, 2005), pp. 200–204.
  9. A. Zandifar, S. Lim, R. Duraiswami, N. Gumerov, and L. S. Davis, “Multi-level fast multipole method for thin plate spline evaluation,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2004), pp. 1683–1686.
  10. F. L. Bookstein, Morphometric Tools for Landmark Data Geometry and Biology (Cambridge University, 1991).
  11. J. Meinguet, “Multivariate interpolation at arbitrary points made simple,” Z. Angew Math. Phys. 30, 292–304 (1979). [CrossRef]
  12. R. Gershon, A. D. Jepson, and J. K. Tsotsos, “From [R,G,B] to surface reflectance: computing color constant descriptors in images,” in Proceedings of the 10th International Joint Conference on Artificial Intelligence (Morgan Kaufmann, 1987), pp. 755–758.
  13. F. Ciurea and B. Funt, “A large image database for color constancy research,” in Proceedings of IS&T/SID Eleventh Color Imaging Conference (Society for Imaging Science and Technology, 2003), pp. 160–163.
  14. G. D. Finlayson, S. D. Hordley, and P. M. Hubel, “Color by correlation: a simple, unifying framework for color constancy,” IEEE Trans. Pattern Anal. Mach. Intell. 23, 1209–1221 (2001). [CrossRef]
  15. S. D. Hordley and G. D. Finlayson, “Re-evaluating colour constancy algorithms,” in Proceedings of 17th International Conference on Pattern Recognition (IEEE, 2004), pp. 76–79. [CrossRef]
  16. K. Barnard, L. Martin, A. Coath, and B. Funt, “A comparison of computational color constancy algorithms. Part two: experiments on image data,” IEEE Trans. Image Process. 11, 985–996(2002). [CrossRef]
  17. P. V. Gehler, C. Rother, A. Blake, T. P. Minka, and T. Sharp, “Bayesian color constancy revisited,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2008), pp. 1–8.
  18. G. D. Finlayson, “Retinex viewed as a Gamut Mapping theory of color constancy,” in Proceedings of AIC International Color Association Color 97 (International Color Association, 1997), Vol.  2, pp. 527–530.
  19. B. Funt and L. Shi, “The rehabilitation of MaxRGB,” in Proceedings of the Eighteenth IS&T Color Imaging Conference (Society for Imaging Science and Technology, 2010), pp. 256–259.
  20. B. Buchsbaum, “A spatial processor model for object color perception,” J. Franklin Inst. 310, 1–26 (1980). [CrossRef]
  21. G. D. Finlayson and E. Trezzi, “Shades of Gray and colour constancy,” in Proceedings of IS&T/SID Twelfth Color Imaging Conference: Color Science, Systems and Applications (Society for Imaging Science and Technology, 2004), pp. 37–41.
  22. J. van de Weijer, T. Gevers, and A. Gijsenij, “Edge-based color constancy,” IEEE Trans. Image Process. 16, 2207–2214(2007). [CrossRef] [PubMed]
  23. W. Xiong, B. Funt, L. Shi, S. Kim, B. Kang, and S. D. Lee, “Automatic white balancing via Gray Surface Identification,” in Proceedings of the Fifteenth IS&T Color Imaging Conference (Society for Imaging Science and Technology, 2007), pp. 143–146.
  24. S. Hordley and G. Finlayson, “A reevaluation of color constancy algorithm performance,” J. Opt. Soc. Am. A 23, 1008–1020(2006). [CrossRef]
  25. G. Finlayson, S. Hordley, and I. Tastl, “Gamut constrained illumination estimation,” Int. J. Comput. Vis. 67, 93–109(2006). [CrossRef]
  26. A. Gijsenij, T. Gevers, and J. van deWeijer, “Generalized Gamut Mapping using image derivative structures for color constancy,” Int. J. Comput. Vis. 86, 127–139 (2008). [CrossRef]
  27. D. Coffin, “Dcraw,” http://en.wikipedia.org/wiki/Dcraw.
  28. S. Bianco, G. Ciocca, C. Cusano, and R. Schettini, “Improving color constancy using indoor–outdoor image classification,” IEEE Trans. Image Process. 17, 2381–2392 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited