OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 6 — Jun. 1, 2011
  • pp: 1086–1095

Mie scattering in the time domain. Part 1. The role of surface waves

James A. Lock and Philip Laven  »View Author Affiliations


JOSA A, Vol. 28, Issue 6, pp. 1086-1095 (2011)
http://dx.doi.org/10.1364/JOSAA.28.001086


View Full Text Article

Acrobat PDF (944 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We computed the Debye series p=1 and p=2 terms of the Mie scattered intensity as a function of scattering angle and delay time for a linearly polarized plane wave pulse incident on a spherical dielectric particle and physically interpreted the resulting numerical data. Radiation shed by electromagnetic surface waves plays a prominent role in the scattered intensity. We determined the surface wave phase and damping rate and studied the structure of the p=1,2 surface wave glory in the time domain.

© 2011 Optical Society of America

OCIS Codes
(290.1350) Scattering : Backscattering
(290.4020) Scattering : Mie theory
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Scattering

History
Original Manuscript: February 15, 2011
Manuscript Accepted: March 16, 2011
Published: May 18, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Citation
James A. Lock and Philip Laven, "Mie scattering in the time domain. Part 1. The role of surface waves," J. Opt. Soc. Am. A 28, 1086-1095 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-6-1086


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. C. van de Hulst, “Rigorous scattering theory for spheres of arbitrary size,” in Light Scattering by Small Particles (Dover, 1957), pp. 114–130.
  2. M. Kerker, “Scattering by a sphere,” in The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969), pp. 27–96.
  3. C. F. Bohren and D. R. Huffman, “Absorption and scattering by a sphere,” in Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983), pp. 82–129.
  4. P. Debye “Das Elektromagnetische Feld um einen Zylinder und die Theorie des Regenbogens,” in Geometrical Aspects of Scattering, P.L.Marston, ed., Milestone Series (SPIE, 1994), Vol.  MS89, pp. 198–204.
  5. B. Van der Pol and H. Bremmer, “The diffraction of electromagnetic waves from an electrical point source round a finitely conducting sphere, with applications to radiotelegraphy and the theory of the rainbow,” Philos. Mag. 24, 825–864 (1937).
  6. E. S. C. Ching, P. T. Leung, and K. Young, “The role of quasinormal modes,” in Optical Processes in MicrocavitiesR.K.Chang and A.J.Campillo, eds. (World Scientific, 1996), pp. 1–75.
  7. R. Greenler, “Rainbows,” in Rainbows, Halos, and Glories (Cambridge University, 1980), pp. 8–10.
  8. L. Mees, G. Gouesbet, and G. Grehan, “Scattering of laser pulses (plane wave and focused Gaussian beam) by spheres,” Appl. Opt. 40, 2546–2550 (2001). [CrossRef]
  9. L. Mees, G. Grehan, and G. Gouesbet, “Time-resolved scattering diagrams for a sphere illuminated by plane wave and focused short pulses,” Opt. Commun. 194, 59–65 (2001). [CrossRef]
  10. H. Bech and A. Leder, “Particle sizing by ultrashort laser pulses—numerical simulation,” Optik 115, 205–217 (2004). [CrossRef]
  11. H. Bech and A. Leder, “Particle sizing by time-resolved Mie calculations—a numerical study,” Optik 117, 40–47 (2006). [CrossRef]
  12. S. Bakic, C. Heinisch, N. Damaschke, T. Tschudi, and C. Tropea, “Time integrated detection of femtosecond laser pulses scattered by small droplets,” Appl. Opt. 47, 523–530 (2008). [CrossRef]
  13. P. Laven, “Separating diffraction from scattering: the million-dollar challenge,” J. Nanophotonics 4, 041593 (2010). [CrossRef]
  14. J. B. Keller, “A geometrical theory of diffraction,” in Calculus of Variations and its Applications, L.M.Graves, ed., Proceedings of Symposia in Applied Mathematics (McGraw-Hill, 1958), Vol.  3, pp. 27–52.
  15. J. A. Lock and P. Laven, “Mie scattering in the time domain. Part 2. The role of diffraction,” J. Opt. Soc. Am. A 28, 1096–1106(2011).
  16. D. Q. Chowdhury, S. C. Hill, and P. W. Barber, “Time dependence of internal intensity of a dielectric sphere on and near resonance,” J. Opt. Soc. Am. A 9, 1364–1373(1992). [CrossRef]
  17. E. E. M. Khaled, D. Q. Chowdhury, S. C. Hill, and P. W. Barber, “Internal and scattered time-dependent intensity of a dielectric sphere illuminated with a pulsed Gaussian beam,” J. Opt. Soc. Am. A 11, 2065–2071 (1994). [CrossRef]
  18. K. S. Schifrin and I. G. Zolotov, “Quasi-stationary scattering of electromagnetic pulses by spherical particles,” Appl. Opt. 33, 7798–7804 (1994). [CrossRef]
  19. The International Association for the Properties of Water and Steam, “Release on refractive index of ordinary water substance as a function of wavelength, temperature and pressure” (International Association for the Properties of Water and Steam, 1997), www.iapws.org/relguide/rindex.pdf.
  20. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  21. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980). [CrossRef]
  22. H. M. Nussenzveig, “High-frequency scattering by a transparent sphere. I. Direct reflection and transmission,” J. Math. Phys. 10, 82–124 (1969). [CrossRef]
  23. H. M. Nussenzveig, “High-frequency scattering by an impenetrable sphere,” Ann. Phys. 34, 23–95 (1965). [CrossRef]
  24. M.Abramowitz and I.A.Stegun, eds., “Bessel functions of integer order,” in Handbook of Mathematical Functions (National Bureau of Standards, 1964), p. 366, Eq. (9.3.3).
  25. H. C. van de Hulst, “The reflected and refracted light,” in Light Scattering by Small Particles (Dover, 1957), p. 212.
  26. K. W. Ford and J. A. Wheeler, “Semiclassical description of scattering,” Ann. Phys. 7, 259–286 (1959). [CrossRef]
  27. M. V. Berry and K. E. Mount, “Semiclassical approximations in wave mechanics,” Rep. Prog. Phys. 35, 315–397(1972). [CrossRef]
  28. V. Khare, “Short-wavelength scattering of electromagnetic waves by a homogeneous dielectric sphere,” Ph.D.dissertation (University of Rochester, 1975), Eqs. 8.32–8.35, 8.40–8.42.
  29. M.Abramowitz and I.A.Stegun, eds., “Bessel functions of integer order,” in Handbook of Mathematical Functions (National Bureau of Standards, 1964), p. 366, Eq. (9.3.4).
  30. M.Abramowitz and I.A.Stegun, eds., “Bessel functions of fractional order,” in Handbook of Mathematical Functions (National Bureau of Standards, 1964), p. 478, Table 10.13.
  31. H. M. Nussenzveig, “Uniform approximation in scattering by spheres,” J. Phys. A 21, 81–109 (1988). [CrossRef]
  32. H. M. Nussenzveig and W. J. Wiscombe, “Complex angular momentum approximation to hard-core scattering,” Phys. Rev. A 43, 2093–2112 (1991). [CrossRef]
  33. I. S. Gradshteyn and I. M. Ryzhik, “Definite integrals of elementary functions,” in Table of Integrals, Series, and Products(Academic, 1965), p. 495, Eq. (3.952.1).
  34. H. C. van de Hulst, “Waves at the surface of a perfect conductor,” in Light Scattering by Small Particles (Dover, 1957), p. 368.
  35. H. C. van de Hulst, “Intensity,” in Light Scattering by Small Particles (Dover, 1957), p. 205.
  36. H. C. van de Hulst, “Theory based on Mie’s formula,” in Light Scattering by Small Particles (Dover, 1957), p. 253.
  37. V. Khare, “Short-wavelength scattering of electromagnetic waves by a homogeneous dielectric sphere,” Ph.D. dissertation (University of Rochester, 1975), Eqs. 8.10, 8.14b.
  38. G. Arfken, “Bessel functions,” in Mathematical Methods for Physicists, 3rd ed. (Academic, 1985), p. 620.
  39. H. C. van de Hulst, “Phase,” in Light Scattering by Small Particles (Dover, 1957), p. 207.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited