OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 6 — Jun. 1, 2011
  • pp: 1121–1138

Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles

Andrey Krywonos, James E. Harvey, and Narak Choi  »View Author Affiliations


JOSA A, Vol. 28, Issue 6, pp. 1121-1138 (2011)
http://dx.doi.org/10.1364/JOSAA.28.001121


View Full Text Article

Enhanced HTML    Acrobat PDF (2850 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Scattering effects from microtopographic surface roughness are merely nonparaxial diffraction phenomena resulting from random phase variations in the reflected or transmitted wavefront. Rayleigh–Rice, Beckmann–Kirchhoff. or Harvey–Shack surface scatter theories are commonly used to predict surface scatter effects. Smooth-surface and/or paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. A recent linear systems formulation of nonparaxial scalar diffraction theory applied to surface scatter phenomena resulted first in an empirically modified Beckmann–Kirchhoff surface scatter model, then a generalized Harvey–Shack theory that produces accurate results for rougher surfaces than the Rayleigh–Rice theory and for larger incident and scattered angles than the classical Beckmann–Kirchhoff and the original Harvey–Shack theories. These new developments simplify the analysis and understanding of nonintuitive scattering behavior from rough surfaces illuminated at arbitrary incident angles.

© 2011 Optical Society of America

OCIS Codes
(290.0290) Scattering : Scattering
(290.3200) Scattering : Inverse scattering
(290.5880) Scattering : Scattering, rough surfaces
(290.1483) Scattering : BSDF, BRDF, and BTDF
(290.5825) Scattering : Scattering theory
(290.5835) Scattering : Scattering, Harvey

ToC Category:
Scattering

History
Original Manuscript: February 9, 2011
Manuscript Accepted: March 25, 2011
Published: May 19, 2011

Citation
Andrey Krywonos, James E. Harvey, and Narak Choi, "Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles," J. Opt. Soc. Am. A 28, 1121-1138 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-6-1121


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. O. Rice, “Reflection of electromagnetic waves from slightly rough surfaces,” Commun. Pure Appl. Math. 4, 351–378 (1951). [CrossRef]
  2. E. L. Church, H. A. Jenkinson, and J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979).
  3. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Pergamon, 1963).
  4. J. E. Harvey, “Light-scattering characteristics of optical surfaces,” Ph.D. dissertation (University of Arizona, 1976).
  5. J. E. Harvey, “Surface scatter phenomena: a linear, shift-invariant process,” Proc. SPIE 1165, 87–99 (1989).
  6. C. L. Vernold and J. E. Harvey, “A modified Beckmann-Kirchhoff scattering theory,” Proc. SPIE 3426, 51–56 (1998). [CrossRef]
  7. J. E. Harvey, A. Krywonos, and C. L. Vernold, “Modified Beckmann-Kirchhoff scattering model for rough surfaces with large incident and scattered angles,” Opt. Eng. 46, 078002 (2007). One of the ten most frequently downloaded SPIE papers and articles (from SPIE Digital Library) in August 2007. [CrossRef]
  8. H. Ragheb and E. Hancock, “The modified Beckmann-Kirchhoff scattering theory for rough surface analysis,” Pattern Recog. 40, 2004–2020 (2007). [CrossRef]
  9. Y. Sun, “Statistical ray method for deriving reflection models of rough surfaces,” J. Opt. Soc. Am. A 24, 724–744 (2007). [CrossRef]
  10. H. Ragheb and E. R. Hancock, “Testing new variants of the Beckmann-Kirchhoff model against radiance data,” Comput. Vis. Image Understanding 102, 145–168 (2006). [CrossRef]
  11. A. Robles-Kelly and E. R. Hancock, “Estimating the surface radiance function from single images,” Graph. Models 67, 518–548 (2005). [CrossRef]
  12. H. Ragheb and E. R. Hancock, “Surface radiance correction for shape from shading,” Pattern Recog. 38, 1574–1595 (2005). [CrossRef]
  13. H. Ragheb and E. R. Hancock, “Adding subsurface attenuation to the Beckmann-Kirchhoff theory,” in Pattern Recognition and Image Analysis, Part 2, Vol.  3523 of Lecture Notes in Computer Science (Springer-Verlag, 2005), pp. 247–254. [CrossRef]
  14. A. Robles-Kelly and E. R. Hancock, “Radiance function estimation for object classification,” in Progress in Pattern Recognition, Image Analysis and Applications, Vol.  3287 of Lecture Notes in Computer Science (Springer-Verlag, 2004), pp. 67–75. [CrossRef]
  15. P. Hermansson, G. Forssell, and J. Fagerstrom, “A review of models for scattering from rough Surfaces,” Scientific Report FOI-R-0988-SE (Swedish Defense Research Agency, Nov. 2003).
  16. H. Ragheb and E. R. Hancock, “Rough surface correction and re-illumination using the modified Beckmann model,” in Computer Analysis of Images and Patterns: 10th International Conference, Proceedings, Vol.  2756 of Lecture Notes in Computer Science (Springer-Verlag, 2003), pp. 98–106.
  17. H. Ragheb and E. R. Hancock, “Rough surface estimation using the Kirchhoff model,” in Image Analysis, Proceedings, Vol.  2749 of Lecture Notes in Computer Science (Springer-Verlag, 2003), pp. 477–484.
  18. T. M. Elfouhaily and C. A. Guerin, “A critical survey of approximate scattering wave theories from random rough surfaces,” Waves Random Media 14, R1–R40 (2004). [CrossRef]
  19. J. E. Harvey, C. L. Vernold, A. Krywonos, and P. L. Thompson, “Diffracted radiance: a fundamental quantity in a non-paraxial scalar diffraction theory,” Appl. Opt. 38, 6469–6481 (1999). [CrossRef]
  20. J. E. Harvey, C. L. Vernold, A. Krywonos, and P. L. Thompson, “Diffracted radiance: a fundamental quantity in a nonparaxial scalar diffraction theory: errata,” Appl. Opt. 39, 6374–6375(2000). [CrossRef]
  21. J. E. Harvey, A. Krywonos, and Dijana Bogunovic, “Non-paraxial scalar treatment of sinusoidal phase gratings,” J. Opt. Soc. Am. A 23, 858–865 (2006). [CrossRef]
  22. R. J. Noll, “Effect of mid and high spatial frequencies on optical performance,” Opt. Eng. 18, 137–142 (1979).
  23. J. E. Harvey, “Bridging the gap between “figure” and “finish”,” presented at the Optical Society of America Optical Fabrication and Testing Meeting, Boston, Massachusetts, May 3, 1996.
  24. E. L. Church, “Fractal surface finish,” Appl. Opt. 27, 1518–1526(1988). [CrossRef] [PubMed]
  25. J. C. Stover, Optical Scattering, Measurement and Analysis, 2nd ed. (SPIE, 1995). [CrossRef]
  26. J. E. Harvey, N. Choi, A. Krywonos, S. Schroder, and D. H. Penalver, “Scattering from moderately rough interfaces between two arbitrary media,” Proc. SPIE 7794, 77940V (2010). [CrossRef]
  27. E. L. Church and P. Z. Takacs, “Instrumental effects in surface finish measurements,” Proc. SPIE 1009, 46–55 (1988).
  28. E. L. Church and P. Z. Takacs, “Effects of the optical transfer function in surface profile measurements,” Proc. SPIE 1164, 46–59 (1989).
  29. A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, and J. M. Bennett, “Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components,” Appl. Opt. 41, 154–171(2002). [CrossRef] [PubMed]
  30. F. E. Nicodemus, “Reflectance nomenclature and directional reflectance and emissivity,” Appl. Opt. 9, 1474–1475 (1970). [CrossRef] [PubMed]
  31. J. E. Harvey, “Scattering effects in x-ray imaging systems,” Proc. SPIE 2515, 246–272 (1995). [CrossRef]
  32. A. Krywonos, “Predicting surface scatter using a linear systems formulation of nonparaxial scalar diffraction,” Ph.D. dissertation (University of Central Florida, 2006).
  33. J. A. Ratcliff, “Some aspects of diffraction theory and their application to the ionosphere,” in Reports of Progress in Physics, A.C.Strickland, ed. (The Physical Society, 1956), Vol.  XIX.
  34. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  35. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, 1978).
  36. J. E. Harvey and C. L. Vernold, “Description of diffraction grating behavior in direction cosine space,” Appl. Opt. 37, 8158–8160 (1998). [CrossRef]
  37. J. E. Harvey and A. Krywonos, “Radiance: the natural quantity for describing diffraction and propagation,” Proc. SPIE 6285, 628503 (2006). [CrossRef]
  38. Users Manual for APART/PADE, Version 8.6 (Breault Research Organization, 4601 East First Street, Tucson, Ariz., 1987), p. 5-2.
  39. ASAP Reference Manual (Breault Research Organization, 4601 East First Street, Tucson, Ariz., 1990), pp. 3–43.
  40. TracePro User’s Manual, Release 3.0 (Lambda Research Corporation, 80 Taylor Street, Littleton, Mass. (1998), p. 7.12.
  41. ZEMAX User’s Guide, August 2007 (ZEMAX Development Corp., 3001 112th Avenue NE, Suite 202, Bellevue, Wash., 2007), p. 391.
  42. FRED User’s Manual, Version 9.110 (Photon Engineering, 440 S. Williams Blvd. #106, Tucson, Ariz., 2010).
  43. http://www.opticsinfobase.org/submit/ocis/.
  44. J. E. Harvey, E. C. Moran, and W. P. Zmek, “Transfer function characterization of grazing incidence optical systems,” Appl. Opt. 27, 1527–1533 (1988). [CrossRef] [PubMed]
  45. P. Glenn, P. Reid, A. Slomba, and L. P. Van Speybroeck, “Performance prediction of AXAF technology mirror assembly using measured mirror surface errors,” Appl. Opt. 27, 1539–1543(1988). [CrossRef] [PubMed]
  46. J. E. Harvey and P. L. Thompson, “Generalized Wolter Type I design for the solar x-ray imager (SXI),” Proc. SPIE 3766, 173–183 (1999). [CrossRef]
  47. J. E. Harvey, A. Krywonos, G. Peterson, and M. Bruner, “Image Degradation due to scattering effects in two-mirror telescopes,” Opt. Eng. 49, 063202 (2010). [CrossRef]
  48. H. Davies, “The reflection of electromagnetic waves from a rough surface,” Proc. IEE IV 101, 209–214 (1954). [CrossRef]
  49. H. E. Bennett and J. O. Porteus, “Relation between surface roughness and specular reflectance at normal incidence,” J. Opt. Soc. Am. 51, 123–129 (1961). [CrossRef]
  50. J. M. Bennett and L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, 1989).
  51. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics(Wiley, 1991). [CrossRef]
  52. S. Fay, S. Dubail, U. Kroll, J. Meier, Y. Ziegler, and A. Shah, “Light trapping enhancement for thin-film silicon solar cells by roughness improvement of the ZnC front TCO,” in Proceedings of the 16th European Photovoltaic Solar Energy Conference & Exhibition (WIP Wirtschaft und Infrastruktur Planungs-KG, 2000), pp. 361–364.
  53. D. Domine, F. J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys. 107, 044504 (2010). [CrossRef]
  54. S. Schröder, A. Duparré, K. Füchsel, N. Kaiser, A. Tünnermann, and J. E. Harvey, “Scattering of roughened TCO films—modeling and measurement,” in OSA Topical Meeting on Optical Interference Coatings, OSA Technical Digest (CD) (2010).
  55. M. Guzar-Sicairos and J. C. Gutierrez-Vega, “Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields,” J. Opt. Soc. Am. A 21, 53–58(2004). [CrossRef]
  56. K. A. O’Donnell and E. R. Mendez, “Experimental study of scattering from characterized random surfaces,” J. Opt. Soc. Am. A 4, 1194–1205 (1987). [CrossRef]
  57. E. L. Church and P. Z. Takacs, “The optimal estimation of finish parameters,” Proc SPIE 1530, 71–86 (1991). [CrossRef]
  58. J. M. Elson, J. M. Bennett, and J. C. Stover, “Wavelength and Angular Dependence of light scattering from beryllium: comparison of theory and experiment,” Appl. Opt. 32, 3362–3376(1993). [CrossRef] [PubMed]
  59. M. G. Dittman, “K-correlation power spectral density and surface scatter model,” Proc. SPIE 6291, 62910P (2006). [CrossRef]
  60. A. J. S. Hamilton, “Uncorrelated modes of nonlinear power spectrum,” Mon. Not. R. Astron. Soc. 312, 257–284 (2000). [CrossRef]
  61. J. E. Harvey, N. Choi, A. Krywonos, and J. Marcen, “Calculating BRDFs from surface PSDs for moderately rough optical surfaces,” Proc. SPIE 7426, 742601 (2009). [CrossRef]
  62. J. C. Stover and J. E. Harvey, “Limitations of Rayleigh-Rice perturbation theory for describing surface scatter,” Proc. SPIE 6672, 66720B (2007). [CrossRef]
  63. J. E. Harvey, A. Krywonos, and J. C. Stover “Unified scatter model for rough surfaces at large incident and scatter angles,” Proc. SPIE 6672, 66720C (2007). [CrossRef]
  64. R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, 1983).
  65. J. J. Murrey, F. E. Nicodemus, and I. Wunderman, “Proposed supplement to the SI nomenclature for radiometry and photometry,” Appl. Opt. 10, 1465–1468 (1971). [CrossRef]
  66. The NIST Reference on Constants, Units, and Uncertainty, http://physics.nist.gov/cuu/Units/units.html.
  67. S. Schröder, S. Gliech, and A. Duparre, “Measurement system to determine the total and angle-resolved light scattering of optical components in the deep-ultraviolet and vacuum-ultraviolet spectral regions,” Appl. Opt. 44, 6093–6107 (2005). [CrossRef] [PubMed]
  68. E. L. Church, P. Z. Takacs, and T. A. Leonard, “The prediction of BRDFs from surface profile measurements,” Proc. SPIE 1165, 136–150 (1989).
  69. S. Schröder, “Light scattering of optical components at 193 nm and 13.5 nm,” Ph.D. dissertation (Friedrich-Schiller-Universitat, Jena, Germany, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited