OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 6 — Jun. 1, 2011
  • pp: 1276–1284

Real-time convolution method for generating light diffusion profiles of layered turbid media

Hoe-Min Kim, Kwang Hee Ko, and Kwan H. Lee  »View Author Affiliations


JOSA A, Vol. 28, Issue 6, pp. 1276-1284 (2011)
http://dx.doi.org/10.1364/JOSAA.28.001276


View Full Text Article

Enhanced HTML    Acrobat PDF (1051 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we present a technique to obtain a diffusion profile of layered turbid media in real time by using the quasi fast Hankel transform (QFHT) and the latest graphics processing unit technique. We apply the QFHT to convolve the diffusion profiles of each layer so as to dramatically reduce the time for the convolution step while maintaining the accuracy. In addition, we also introduce an accelerated technique to generate individual discrete diffusion profiles for each layer through parallel processing. The proposed method is 2 orders of magnitude faster than the existing method, and we validate its efficiency by comparing it with Monte Carlo simulation and another relevant methods.

© 2011 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.7050) Medical optics and biotechnology : Turbid media
(290.1990) Scattering : Diffusion
(290.4210) Scattering : Multiple scattering

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 4, 2011
Manuscript Accepted: March 24, 2011
Published: May 27, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Hoe-Min Kim, Kwang Hee Ko, and Kwan H. Lee, "Real-time convolution method for generating light diffusion profiles of layered turbid media," J. Opt. Soc. Am. A 28, 1276-1284 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-6-1276


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Yamaguchi, M. Mitsui, Y. Murakami, H. Fukuda, N. Ohyama, and Y. Kubota, “Multispectral color imaging for dermatology: application in inflammatory and immunologic diseases,” in Proceedings of The Society for Imaging Science and Technology Color Imaging Conference, (The Society for Imaging Science and Technology, 2005), pp. 52–57.
  2. W. M. Star, “Light dosimetry in vivo,” Phys. Med. Biol. 42, 763–787 (1997). [CrossRef] [PubMed]
  3. L. Wang, S. Jacques, and L. Zheng, “Mcml—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995). [CrossRef] [PubMed]
  4. E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed monte carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008). [CrossRef]
  5. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17, 20178–20190 (2009). [CrossRef] [PubMed]
  6. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  7. P. Kubelka, “New contributions to the optics of intensely light-scattering materials. Part I,” J. Opt. Soc. Am. 38, 448–457 (1948). [CrossRef] [PubMed]
  8. B. Maheu, J. N. Letoulouzan, and G. Gouesbet, “Four-flux models to solve the scattering transfer equation in terms of lorenz-mie parameters,” Appl. Opt. 23, 3353–3362 (1984). [CrossRef] [PubMed]
  9. T. J. Farrell and M. S. Patterson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef] [PubMed]
  10. A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnieres, and H. Van Den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779–791 (1998). [CrossRef]
  11. J.-M. Tualle, H. L. Nghiem, D. Ettori, R. Sablong, E. Tinet, and S. Avrillier, “Asymptotic behavior and inverse problem in layered scattering media,” J. Opt. Soc. Am. A 21, 24–34 (2004). [CrossRef]
  12. X. C. Wang and S. M. Wang, “Light transport model in a n-layered mismatched tissue,” Waves Random Complex Media 16, 121–135 (2006). [CrossRef]
  13. A. Liemert and A. Kienle, “Light diffusion in n-layered turbid media: steady-state domain,” J. Biomed. Opt. 15, 025003 (2010). [CrossRef] [PubMed]
  14. A. Liemert and A. Kienle, “Light diffusion in n-layered turbid media: frequency and time domains,” J. Biomed. Opt. 15, 025002 (2010). [CrossRef] [PubMed]
  15. C. Donner and H. W. Jensen, “Rapid simulation of steady-state spatially resolved reflectance and transmittance profiles of multilayered turbid materials,” J. Opt. Soc. Am. A 23, 1382–1390(2006). [CrossRef]
  16. P. Kubelka, “New contribution to the optics of intensely light-scattering materials. part ii: Nonhomogeneous layers,” J. Opt. Soc. Am. 44, 330–335 (1954). [CrossRef]
  17. A. E. Siegman, “Quasi fast hankel transform,” Opt. Lett. 1, 13–15 (1977). [CrossRef] [PubMed]
  18. S.-C. Sheng and A. E. Siegman, “Nonlinear-optical calculations using fast-transform methods: Second-harmonic generation with depletion and diffraction,” Phys. Rev. A 21, 599–606(1980). [CrossRef]
  19. L. Wang, “Rapid modeling of diffuse reflectance of light in turbid slabs,” J. Opt. Soc. Am. A 15, 936–944 (1998). [CrossRef]
  20. M. Birkinshaw, “Radially-symmetric Fourier transforms,” in Astronomical Data Analysis Software and Systems III, Astronomical Society of the Pacific Conference Series (Astronomical Society of the Pacific, 1994), vol.  61, pp. 249–252.
  21. V. Magni, G. Cerullo, and S. D. Silvestri, “High-accuracy fast Hankel transform for optical beam propagation,” J. Opt. Soc. Am. A 9, 2031–2033 (1992). [CrossRef]
  22. R. Barakat, E. Parshall, and B. H. Sandler, “Zero-order Hankel transformation algorithms based on Filon quadrature philosophy for diffraction optics and beam propagation,” J. Opt. Soc. Am. A 15, 652–659 (1998). [CrossRef]
  23. L. Yu, M. Huang, M. Chen, W. Chen, W. Huang, and Z. Zhu, “Quasi-discrete hankel transform,” Opt. Lett. 23, 409–411(1998). [CrossRef]
  24. J. Y. Hardeberg, F. J. M. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002). [CrossRef]
  25. C. Donner and H. W. Jensen, “A spectral BSSRDF for shading human skin,” in Proceedings of Eurographics Workshop on Rendering, (Eurographics Association, 2006), pp. 409–418.
  26. J. Jimenez, T. Scully, N. Barbosa, C. Donner, X. Alvarez, T. Vieira, P. Matts, V. Orvalho, D. Gutierrez, and T. Weyrich, “A practical appearance model for dynamic facial color,” ACM Trans. Graph. 29, Art.. 18661671, (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited