OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 8 — Aug. 1, 2011
  • pp: 1586–1594

Isotropic single-objective microscopy: theory and experiment

Eric Le Moal, Emeric Mudry, Patrick C. Chaumet, Patrick Ferrand, and Anne Sentenac  »View Author Affiliations

JOSA A, Vol. 28, Issue 8, pp. 1586-1594 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (914 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Isotropic single-objective (ISO) microscopy is a recently proposed imaging technique that can theoretically exhibit the same axial and transverse resolutions as 4Pi microscopy while using a classical single-objective confocal microscope. This achievement is obtained by placing the sample on a mirror and shaping the illumination beam so that the interference of the incident and mirror-reflected fields yields a quasi-spherical spot. In this work, we model the image formation in the ISO fluorescence microscope and simulate its point spread function. Then, we describe the experimental implementation and discuss its practical difficulties.

© 2011 Optical Society of America

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:

Original Manuscript: March 25, 2011
Revised Manuscript: May 31, 2011
Manuscript Accepted: June 1, 2011
Published: July 11, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Eric Le Moal, Emeric Mudry, Patrick C. Chaumet, Patrick Ferrand, and Anne Sentenac, "Isotropic single-objective microscopy: theory and experiment," J. Opt. Soc. Am. A 28, 1586-1594 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Martínez-Corral and G. Saavedra, “The resolution challenge in 3D optical microscopy,” Prog. Opt. 53, 1–67 (2009). [CrossRef]
  2. A. S. van de Nes, J. J. M. Braat, and S. F. Pereira, “High-density optical data storage,” Rep. Prog. Phys. 69, 2323–2363(2006). [CrossRef]
  3. E. Walker, A. Dvornikov, K. Coblentz, S. Esener, and P. Rentzepis, “Toward terabyte two-photon 3D disk,” Opt. Express 15, 12264–12276 (2007). [CrossRef] [PubMed]
  4. P. C. ChaumetB. Pouligny, R. Dimova, and N. Sojic, “Optical tweezers in interaction with an apertureless probe,” J. Appl. Phys. 102, 024915 (2007). [CrossRef]
  5. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sonnichsen, and L. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8, 2998–3003 (2008). [CrossRef] [PubMed]
  6. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, 021875(2008). [CrossRef]
  7. C. J. R. Sheppard and Z. S. Hegedus, “Axial behavior of pupil-plane filters,” J. Opt. Soc. Am. A 5, 643–647 (1988). [CrossRef]
  8. M. Martínez-Corral, P. Andrés, C. J. Zapata-Rodriguez, and M. Kowalczyk, “Three-dimensional superresolution by annular binary filters,” Opt. Commun. 165, 267–278 (1999). [CrossRef]
  9. M. Martínez-Corral, M. T. Caballero, E. H. K. Stelzer, and J. Swoger, “Tailoring the axial shape of the point spread function using the Toraldo concept,” Opt. Express 10, 98–103(2002). [PubMed]
  10. G. Boyer, “New class of axially apodizing filters for confocal scanning microscopy,” J. Opt. Soc. Am. A 19, 584–589 (2002). [CrossRef]
  11. M. Martínez-Corral, C. Ibanez-Lopez, G. Saavedra, and M. T. Caballero, “Axial gain in resolution in optical sectioning fluorescence microscopy by shaded-ring filters,” Opt. Express 11, 1740–1745 (2003). [CrossRef] [PubMed]
  12. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  13. N. Lindlein, S. Quabis, U. Peschel, and G. Leuchs, “High numerical aperture imaging with different polarization patterns,” Opt. Express 15, 5827–5842 (2007). [CrossRef] [PubMed]
  14. W. Chen and Q. Zhan, “Diffraction limited focusing with controllable arbitrary three-dimensional polarization,” J. Opt. 12, 045707 (2010). [CrossRef]
  15. B. J. Davis, W. C. Karl, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Capabilities and limitations of pupil-plane filters for superresolution and image enhancement,” Opt. Express 12, 4150–4156 (2004). [CrossRef] [PubMed]
  16. L. Melton, “Imaging: the big picture,” Nature 437, 775–779(2005). [CrossRef] [PubMed]
  17. S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6, 24–32 (2009). [CrossRef] [PubMed]
  18. S. W. Hell and E. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166 (1992). [CrossRef]
  19. M. Nagorni and S. W. Hell, “Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts,” J. Opt. Soc. Am. A 18, 36–48(2001). [CrossRef]
  20. J. Bewersdorf, R. Schmidt, and S. W. Hell, “Comparison of I5M and 4Pi-microscopy,” J. Microsc. 222, 105–117 (2006). [CrossRef] [PubMed]
  21. H. Gugel, J. Bewersdorf, S. Jakobs, J. Engelhardt, R. Storz, and S. W. Hell, “Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live cell microscopy,” Biophys. J. 87, 4146–4152 (2004). [CrossRef] [PubMed]
  22. M. Nagorni and S. W. Hell, “4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150 nm resolution,” J. Struct. Biol. 123, 236–247 (1998). [CrossRef]
  23. J. Bewersdorf, B. T. Bennett, and K. L. Knight, “H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy,” Proc. Natl. Acad. Sci. USA 103, 18137–18142(2006). [CrossRef] [PubMed]
  24. E. Mudry, P. C. Chaumet, K. Belkebir, G. Maire, and A. Sentenac, “Mirror-assisted optical diffraction tomography with isotropic resolution,” Opt. Lett. 35, 1857–1859 (2010). [CrossRef] [PubMed]
  25. E. Mudry, E. Le Moal, P. Ferrand, P. C. Chaumet, and A. Sentenac, “Isotropic diffraction-limited focusing using a single objective lens,” Phys. Rev. Lett. 105, 203903 (2010). [CrossRef]
  26. R. Carminati, R. Pierrat, J. de Rosny, and M. Fink, “Theory of the time reversal cavity for electromagnetic fields,” Opt. Lett. 32, 3107–3109 (2007). [CrossRef] [PubMed]
  27. C. J. R. Sheppard and K. J. Larkin, “Effect of numerical aperture on interference fringe spacing interferometry,” Appl. Opt. 34, 4731–4734 (1995). [CrossRef] [PubMed]
  28. C. J. R. Sheppard and P. Torok, “Electromagnetic field in the focal region of an electric dipole wave,” Optik 104, 175–177(1997).
  29. J.-J. Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133–237 (1997). [CrossRef]
  30. M. Schrader, M. Kozubek, S. W. Hell, and T. Wilson, “Optical transfer functions of 4Pi confocal microscopes: theory and experiment,” Opt. Lett. 22, 436–438 (1997). [CrossRef] [PubMed]
  31. P. Torok and C. J. R. Sheppard, “The role of pinhole size in high-aperture two and three-photon microscopy,” in Confocal and Two-Photon Microscopy, A.Diaspro, ed. (Wiley-Liss, 2001).
  32. H. J. Matthews, D. K. Hamilton, and C. J. R. Sheppard, “Aberration measurement by confocal interferometry,” J. Mod. Opt. 36, 233–250 (1989). [CrossRef]
  33. M. Lang, T. Muller, J. Engelhardt, and S. W. Hell, “4Pi microscopy of type A with 1-photon excitation in biological fluorescence imaging,” Opt. Express 15, 2459–2467 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited