OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 8 — Aug. 1, 2011
  • pp: 1689–1694

Coherent transfer function of Fourier transform spectral interferometric coherent anti-Stokes Raman scattering microscopy

Naoki Fukutake  »View Author Affiliations

JOSA A, Vol. 28, Issue 8, pp. 1689-1694 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (674 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the optical resolution of Fourier transform spectral interferometric-coherent anti-Stokes Raman scattering microscopy, which extracts the complex amplitude of an image by using a spectral interferometric effect. Image-formation formulas are presented that describe the properties of the image observed by the apparatus. The image-formation properties represented by the coherent transfer function are different depending on the mode (transmission, reflection, etc.) of the microscopy.

© 2011 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.2990) Imaging systems : Image formation theory
(180.6900) Microscopy : Three-dimensional microscopy
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Imaging Systems

Original Manuscript: May 2, 2011
Revised Manuscript: June 21, 2011
Manuscript Accepted: June 21, 2011
Published: July 27, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Naoki Fukutake, "Coherent transfer function of Fourier transform spectral interferometric coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. A 28, 1689-1694 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  2. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003). [CrossRef] [PubMed]
  3. E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994). [CrossRef]
  4. I. Freund and M. Deutsch, “2nd-harmonic microscopy of biological tissue,” Opt. Lett. 11, 94–96 (1986). [CrossRef] [PubMed]
  5. P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001). [CrossRef] [PubMed]
  6. J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun. 196, 325–330 (2001). [CrossRef]
  7. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997). [CrossRef]
  8. M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998). [CrossRef] [PubMed]
  9. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994). [CrossRef] [PubMed]
  10. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008). [CrossRef] [PubMed]
  11. N. Fukutake, “Resolution properties of nonlinear optical microscopy,” J. Opt. Soc. Am. A 27, 1701–1707 (2010). [CrossRef]
  12. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7, 350–352(1982). [CrossRef] [PubMed]
  13. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999). [CrossRef]
  14. M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamagichi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Ang. Chem. Int. Ed. 49, 6773–6777 (2010). [CrossRef]
  15. Y. Zeng, B. G. Saar, M. G. Friedrich, F. Chen, Y. Liu, R. A. Dixon, M. E. Himmel, X. S. Xie, and S. Ding, “Imaging lignin-downregulated alfalfa using coherent anti-Stokes Raman scattering microscopy,” Bioenerg. Res. 3, 272–277 (2010). [CrossRef]
  16. C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. C. Wong, and G. S. Young, “Chemically-selective imaging of brain structures with CARS microscopy,” Opt. Express 15, 12076–12087 (2007). [CrossRef] [PubMed]
  17. S. Lim, A. G. Caster, and S. R. Leone, “Fourier transform spectral interferometric coherent anti-Stokes Raman scattering (FTSI-CARS) spectroscopy,” Opt. Lett. 32, 1332–1334 (2007). [CrossRef] [PubMed]
  18. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1974).
  19. C. J. R. Sheppard and M. Gu, “The three-dimensional (3-D) transmission cross-coefficient for transmission imaging,” Optik 100, 155–158 (1995).
  20. M. Gu, Principles of Three Dimensional Imaging in Confocal Microscopes (World Scientific, 1996). [CrossRef]
  21. S. W. Hell and E. H. K. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166(1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited