OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 9 — Sep. 1, 2011
  • pp: 1889–1895

Modeling the mechanism of compensation of aberrations in the human eye for accommodation and aging

Juan Tabernero, Esther Berrio, and Pablo Artal  »View Author Affiliations


JOSA A, Vol. 28, Issue 9, pp. 1889-1895 (2011)
http://dx.doi.org/10.1364/JOSAA.28.001889


View Full Text Article

Enhanced HTML    Acrobat PDF (855 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The mechanisms of compensation of aberration between cornea and lens are somehow modified during both accommodation and aging. In 15 individualized ocular models of young and unaccommodated eyes, we used morphological data of the lens to simulate the effect of accommodation and aging on these mechanisms. The predicted changes in aberrations were compared to data from the literature. In general, only the variation of the lens curvature was enough to reproduce the decrease in ocular spherical aberration (SA) during accommodation. However, the increase in SA with age could only be explained as a consequence of an increase in the conic constant of the lens and/or additional changes on the gradient index.

© 2011 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.7322) Vision, color, and visual optics : Visual optics, accommodation
(330.7323) Vision, color, and visual optics : Visual optics, aging changes
(330.7326) Vision, color, and visual optics : Visual optics, modeling

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: June 7, 2011
Revised Manuscript: July 22, 2011
Manuscript Accepted: July 22, 2011
Published: August 25, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Juan Tabernero, Esther Berrio, and Pablo Artal, "Modeling the mechanism of compensation of aberrations in the human eye for accommodation and aging," J. Opt. Soc. Am. A 28, 1889-1895 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-9-1889


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. G. El Hage and F. Berny, “Contribution of crystalline lens to the spherical aberration of the eye,” J. Opt. Soc. Am. 63, 205–211 (1973). [CrossRef] [PubMed]
  2. P. Artal and A. Guirao, “Contribution of cornea and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998). [CrossRef]
  3. P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vision 1, 1–8 (2001). [CrossRef]
  4. J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vision 4, 262–271 (2004). [CrossRef]
  5. P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006). [CrossRef]
  6. P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008). [CrossRef]
  7. J. Tabernero, A. Benito, E. Alcón, and P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A 24, 3274–3283 (2007). [CrossRef]
  8. A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism in the human eye,” Am. J. Ophthalmol. 147, 424–431 (2009). [CrossRef]
  9. A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002). [PubMed]
  10. J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32, 406–408 (2007). [CrossRef] [PubMed]
  11. D. A. Atchison, E. Markwell, S. Kasturirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vision 8, 1–20 (2008). [CrossRef]
  12. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41, 1867–1877 (2001). [CrossRef] [PubMed]
  13. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45, 117–132 (2005). [CrossRef]
  14. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected scheimpflug images,” Opt. Vis. Sci. 78, 411–416 (2001). [CrossRef]
  15. M. Dubbleman, V. A. D. P. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46, 993–1001 (2006). [CrossRef]
  16. P. Artal, M. Ferro, I. Miranda, and R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662(1993). [CrossRef] [PubMed]
  17. A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, and P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).
  18. R. I. Calver, M. J. Cox, and D. B. Elliot, “Effect of aging on the monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 16, 2069–2078 (1999). [CrossRef]
  19. J. S. McLellan, S. Marcos, and S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).
  20. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002). [CrossRef]
  21. I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Visual Sci. 44, 5438–5446 (2003). [CrossRef]
  22. R. A. Applegate, W. J. Donnelly, J. D. Marsack, and D. E. Koenig, “Three-dimensional relationship between high-order root-mean-square wavefront error, pupil diameter, and aging,” J. Opt. Soc. Am. A 24, 578–587 (2007). [CrossRef]
  23. D. A. Atchison and E. L. Markwell, “Aberration of emmetropic subjects at different ages,” Vision Res. 48, 2224–2231 (2008). [CrossRef] [PubMed]
  24. E. Berrio, J. Tabernero, and P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vision 10, 34 (2010). [CrossRef]
  25. P. Artal, E. J. Fernández, and S. Manzanera, “Are optical aberrations during accommodation a significant problem for refractive surgery?” J. Refract. Surg. 18, S563–S566 (2002). [PubMed]
  26. H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004). [CrossRef]
  27. S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vision 5, 466–477 (2005). [CrossRef]
  28. H. Radhakrishnan and W. N. Charman, “Age-related changes in ocular aberrations with accommodation,” J. Vision 7, 1–21(2007). [CrossRef]
  29. J. Tabernero, A. Benito, V. Nourrit, and P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006). [CrossRef] [PubMed]
  30. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000). [CrossRef]
  31. Y. Le Grand and S. G. El Hage, Physiological Optics, Springer Series in Optical Sciences (Springer-Verlag, 1980).
  32. T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).
  33. A. Guirao, M. Redondo, and P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697–1702 (2000). [CrossRef]
  34. R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985). [CrossRef] [PubMed]
  35. L. N. Hazra and C. A. Delisle, “Primary aberrations of a thin lens with different object and image space media,” J. Opt. Soc. Am. A 15, 945–953 (1998). [CrossRef]
  36. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Visual Sci. 49, 2531–2540 (2008). [CrossRef]
  37. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vision 11, 1–16 (2011). [CrossRef]
  38. C. E. Campbell, “Nested shell optical model of the lens of the human eye,” J. Opt. Soc. Am. A 27, 2432–2441 (2010). [CrossRef]
  39. R. Navarro, F. Palos, and L. M. González, “Adaptive model of the gradient index of the human lens. II. Optics of the accommodating aging lens,” J. Opt. Soc. Am. A 24, 2911–2920 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited