## Reflection and transmission of normally incident full-vector X waves on planar interfaces |

JOSA A, Vol. 29, Issue 1, pp. 139-152 (2012)

http://dx.doi.org/10.1364/JOSAA.29.000139

Enhanced HTML Acrobat PDF (1000 KB)

### Abstract

The reflection and transmission of full-vector X waves normally incident on planar half-spaces and slabs are studied. For this purpose, X waves are expanded in terms of weighted vector Bessel beams; this new decomposition and reconstruction method offers a more lucid and intuitive interpretation of the physical phenomena observed upon the reflection or transmission of X waves when compared to the conventional plane-wave decomposition technique. Using the Bessel beam expansion approach, we have characterized changes in the field shape and the intensity distribution of the transmitted and reflected full-vector X waves. We have also identified a novel longitudinal shift, which is observed when a full-vector X wave is transmitted through a dielectric slab under frustrated total reflection condition. The results of our studies presented here are valuable in understanding the behavior of full-vector X waves when they are utilized in practical applications in electromagnetics, optics, and photonics, such as trap and tweezer setups, optical lithography, and immaterial probing.

© 2012 Optical Society of America

**OCIS Codes**

(070.4790) Fourier optics and signal processing : Spectrum analysis

(260.2110) Physical optics : Electromagnetic optics

(260.6970) Physical optics : Total internal reflection

(290.2558) Scattering : Forward scattering

(070.3185) Fourier optics and signal processing : Invariant optical fields

(070.7345) Fourier optics and signal processing : Wave propagation

**ToC Category:**

Fourier Optics and Signal Processing

**History**

Original Manuscript: September 30, 2011

Revised Manuscript: November 2, 2011

Manuscript Accepted: November 2, 2011

Published: December 23, 2011

**Citation**

Mohamed A. Salem and Hakan Bağcı, "Reflection and transmission of normally incident full-vector X waves on planar interfaces," J. Opt. Soc. Am. A **29**, 139-152 (2012)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-1-139

Sort: Year | Journal | Reset

### References

- J.-Y. Lu and J. F. Greenleaf, “Nondiffracting X waves—exact solutions to free-space scalar wave equation and their finite aperture realizations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19–31 (1992). [CrossRef]
- H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, eds., Localized Waves (Wiley, 2008).
- A. M. Attiya, E. El-Diwany, A. M. Shaarawi, and I. M. Besieris, “Reflection and transmission of X-waves in the presence of planarly layered media: the pulsed plane wave representation,” Prog. Electromagn. Res. 30, 191–211 (2001). [CrossRef]
- A. M. Shaarawi and I. M. Besieris, “Superluminal tunneling of an electromagnetic X wave through a planar slab,” Phys. Rev. E 62, 7415–7421 (2000). [CrossRef]
- A. M. Shaarawi and I. M. Besieris, “Ultra-fast multiple tunnelling of electromagnetic X-waves,” J. Phys. A 33, 8559–8576 (2000). [CrossRef]
- A. M. Shaarawi, B. H. Tawfik, and I. M. Besieris, “Superluminal advanced transmission of X waves undergoing frustrated total internal reflection: the evanescent fields and the Goos–Hänchen effect,” Phys. Rev. E 66, 046626 (2002). [CrossRef]
- A. M. Shaarawi, I. M. Besieris, A. M. Attiya, and E. El-Diwany, “Reflection and transmission of an electromagnetic X-wave incident on a planar air–dielectric interface: spectral analysis,” Prog. Electromagn. Res. 30, 213–249 (2001). [CrossRef]
- A. M. Attiya, E. A. El-Diwany, and A. M. Shaarwai, “Transmission and reflection of TE electromagnetic X-wave normally incident on a lossy dispersive half-space,” in 17th National Radio Science Conference, NRSC’2000 (IEEE, 2000), pp. B11.1–B11.12.
- M. A. Salem and H. Bağcı, “Energy flow characteristics of vector X-waves,” Opt. Express 19, 8526–8532 (2011). [CrossRef]
- B. Zhang and B.-I. Wu, “Electromagnetic detection of a perfect invisibility cloak,” Phys. Rev. Lett. 103, 243901 (2009). [CrossRef]
- M. A. Salem and H. Bağcı, “Detecting electromagnetic cloaks using backward-propagating waves,” in Proceedings of the XXXth URSI General Assembly (IEEE, 2011), pp. 1–3.
- A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy–Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4, 103–106 (2010). [CrossRef]
- F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photon. 4, 780–785 (2010). [CrossRef]
- L. A. Ambrosio and H. E. Hernández-Figueroa, “Gradient forces on double-negative particles in optical tweezers using Bessel beams in the ray optics regime,” Opt. Express 18, 24287–24292 (2010). [CrossRef]
- Z. Zheng, B.-F. Zhang, H. Chen, J. Ding, and H.-T. Wang, “Optical trapping with focused Airy beams,” Appl. Opt. 50, 43–49 (2011). [CrossRef]
- T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011). [CrossRef]
- F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 436, 333–346 (1947). [CrossRef]
- F. I. Fedorov, “On the theory of total reflection,” Dokl. Akad. Nauk SSSR 105, 465–468 (1955).
- C. Imbert, “Calculation and experimental proof of transverse shift by total internal reflection of a circularly polarized light beam,” Phys. Rev. D 5, 787–796 (1972). [CrossRef]
- E. Recami, “On localized “X-shaped” superluminal solutions to Maxwell equations,” Physica A 252, 586–610 (1998). [CrossRef]
- M. Zamboni-Rached, E. Recami, and F. Fontana, “Superluminal localized solutions to maxwell equations propagating along a normal-sized waveguide,” Phys. Rev. E 64, 066603 (2001). [CrossRef]
- M. Zamboni-Rached, K. Z. Nóbrega, E. Recami, and H. E. Hernández-Figueroa, “Superluminal X-shaped beams propagating without distortion along a coaxial guide,” Phys. Rev. E 66, 046617 (2002). [CrossRef]
- M. Zamboni-Rached, F. Fontana, and E. Recami, “Superluminal localized solutions to Maxwell equations propagating along a waveguide: the finite-energy case,” Phys. Rev. E 67, 036620 (2003). [CrossRef]
- A. Ciattoni, C. Conti, and P. D. Porto, “Vector electromagnetic X waves,” Phys. Rev. E 69, 036608 (2004). [CrossRef]
- G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, Sixth Edition: A Comprehensive Guide (Academic, 2005).
- S. Ruschin and A. Leizer, “Evanescent Bessel beams,” J. Opt. Soc. Am. A 15, 1139–1143 (1998). [CrossRef]
- W. B. Williams and J. B. Pendry, “Generating Bessel beams by use of localized modes,” J. Opt. Soc. Am. A 22, 992–997 (2005). [CrossRef]
- Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31, 1726–1728 (2006). [CrossRef]
- J. J. Miret and C. J. Zapata-Rodríguez, “Diffraction-free propagation of subwavelength light beams in layered media,” J. Opt. Soc. Am. B 27, 1435–1445 (2010). [CrossRef]
- G. Rui, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Generation of enhanced evanescent Bessel beam using band-edge resonance,” J. Appl. Phys. 108, 074304 (2010). [CrossRef]
- G. Rui, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Evanescent Bessel beam generation through filtering highly focused cylindrical vector beams with a defect mode one-dimensional photonic crystal,” Opt. Commun. 283, 2272–2276 (2010). [CrossRef]
- A. V. Novitsky and L. M. Barkovsky, “Total internal reflection of vector Bessel beams: Imbert–Fedorov shift and intensity transformation,” J. Opt. A 10, 075006 (2008). [CrossRef]
- G. A. Deschamps, “Gaussian beam as a bundle of complex rays,” Electron. Lett. 7, 684–685 (1971). [CrossRef]
- P. Einziger and L. Felsen, “Evanescent waves and complex rays,” IEEE Trans. Antennas Propag. 30, 594–605 (1982). [CrossRef]
- M. A. Salem and H. Bağcı, “On the propagation of truncated localized waves in dispersive silica,” Opt. Express 18, 25482–25493 (2010). [CrossRef]
- M. A. Salem and H. Bağcı, “Enhancing propagation characteristics of truncated localized waves in silica,” in 2011 IEEE International Symposium on Antennas and Propagation (APSURSI) (IEEE, 2011), pp. 500–503.
- M. Zamboni-Rached, K. Z. Nóbrega, H. E. Hernández-Figueroa, and E. Recami, “Localized superluminal solutions to the wave equation in (vacuum or) dispersive media, for arbitrary frequencies and with adjustable bandwidth,” Opt. Commun. 226, 15–23 (2003). [CrossRef]
- G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
- A. V. Novitsky and D. V. Novitsky, “Change of the size of vector Bessel beam rings under reflection,” Opt. Commun. 281, 2727–2734 (2008). [CrossRef]
- P. Hillion, “Electromagnetic tunneling Bessel beams,” Opt. Commun. 153, 199–201 (1998). [CrossRef]
- D. Mugnai, “Passage of a Bessel beam through a classically forbidden region,” Opt. Commun. 188, 17–24 (2001). [CrossRef]
- D. Mugnai, “Bessel beam through a dielectric slab at oblique incidence: the case of total reflection,” Opt. Commun. 207, 95–99 (2002). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.