Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Empirical model for target depth estimation used in the time-domain subsurface imaging

Not Accessible

Your library or personal account may give you access

Abstract

Monte Carlo simulations were performed in order to obtain reflectance measurements from phantoms typically used in biomedical optics when either unpolarized or circularly polarized incident light is used. Phantoms contain spherical targets of different diameters, placed at different depths, with higher absorption than the surrounding medium, which are detected using a coaxial setup of laser and detector. The considered turbid media have highly anisotropic scattering phase functions, so detected light for the considered times of flight is not diffuse, but rather in the multiple-scattering regime. Therefore, the target reconstruction methods typically used in diffuse optical imaging cannot be employed. However, spatially resolved reflectance measurements in the time domain allow use of a novel reconstruction method based on the approximation of average photon trajectories, which are functions of the separation distance from the point of incidence and of the time of flight. With the approximated average photon trajectories, one can estimate the depth of the target.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Contrast improvement by selecting ballistic-photons using polarization gating

Miloš Šormaz and Patrick Jenny
Opt. Express 18(23) 23746-23755 (2010)

Expression of target optical properties in subsurface polarization-gated imaging

Ralph Nothdurft and Gang Yao
Opt. Express 13(11) 4185-4195 (2005)

Determination of target depth in a turbid medium with polarization-dependent transmitted signals

Chia-Wei Sun, Kuei-Chao Liu, Yih-Ming Wang, Hsiang-Hsu Wang, Yean-Woei Kiang, Hua-Kuang Liu, and C. C. Yang
J. Opt. Soc. Am. A 20(11) 2106-2112 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved