OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2190–2196

Intensity correlations of partially polarized light: a field decomposition approach

Philippe Réfrégier  »View Author Affiliations

JOSA A, Vol. 29, Issue 10, pp. 2190-2196 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (765 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Intensity fluctuations of partially polarized light with Gaussian statistics are investigated using a field decomposition approach. These developments provide an enlightening interpretation of the Hanbury Brown–Twiss effect of partially polarized Gaussian light. In particular, the behavior of the intensity fluctuation correlations can be interpreted as resulting from the mixing of two incoherent lights between themselves.

© 2012 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.6600) Coherence and statistical optics : Statistical optics
(260.5430) Physical optics : Polarization

ToC Category:
Coherence and Statistical Optics

Original Manuscript: July 19, 2012
Manuscript Accepted: August 13, 2012
Published: September 24, 2012

Philippe Réfrégier, "Intensity correlations of partially polarized light: a field decomposition approach," J. Opt. Soc. Am. A 29, 2190-2196 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956). [CrossRef]
  2. L. Mandel and E. Wolf, “The Hanbury Brown–Twiss effect,” in Optical Coherence and Quantum Optics (Cambridge University, 1995), pp. 458–460.
  3. J. Tervo, T. Setälä, and A. T. Friberg, “Degree of coherence of electromagnetic fields,” Opt. Express 11, 1137–1142(2003). [CrossRef]
  4. T. Shirai and E. Wolf, “Correlations between intensity fluctuations in stochastic electromagnetic beams of any state of coherence and polarization,” Opt. Commun. 272, 289–292 (2007). [CrossRef]
  5. S. N. Volkov, D. F. V. James, T. Shirai, and E. Wolf, “Intensity fluctuations and the degree of cross-polarization in stochastic electromagnetic beam,” J. Opt. A 10, 055001 (2008). [CrossRef]
  6. D. Kuebel, “Properties of the degree of cross-polarization in the space time domain,” Opt. Commun. 282, 3397–3401(2009). [CrossRef]
  7. A. Al-Qasimi, M. Lahiri, D. Kuebel, D. F. V. James, and E. Wolf, “The influence of the degree of cross-polarization on the Hanbury Brown–Twiss effect,” Opt. Express 18, 17124–17129 (2010). [CrossRef]
  8. T. Hassinen, J. Tervo, T. Setälä, and A. T. Friberg, “Hanbury Brown–Twiss effect with electromagnetic waves,” Opt. Express 19, 15188–15195 (2011). [CrossRef]
  9. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312, 263–267(2003). [CrossRef]
  10. F. Gori, M. Santarsiero, R. Simon, G. Piquero, R. Borghi, and G. Guattari, “Coherent-mode decomposition of partially polarized, partially coherent sources,” J. Opt. Soc. Am. A 20, 78–84(2003). [CrossRef]
  11. J. Ellis and A. Dogariu, “Complex degree of mutual polarization,” Opt. Lett. 29, 536–538 (2004). [CrossRef]
  12. A. Luis, “Degree of coherence for vectorial electromagnetic fields as the distance between correlation matrices,” J. Opt. Soc. Am. A 24, 1063–1068 (2007). [CrossRef]
  13. R. Martinez-Herrero and P. M. Mejias, “Relation between degrees of coherence for electromagnetic fields,” Opt. Lett. 32, 1504–1506 (2007). [CrossRef]
  14. R. Martinez-Herrero, P. M. Mejias, and G. Piquero, “Polarization and coherence of random electromagnetic fields,” in Characterization of Partially Polarized Light Fields (Springer-Verlag, 2009), pp. 93–124.
  15. Ph. Réfrégier and F. Goudail, “Invariant degrees of coherence of partially polarized light,” Opt. Express 13, 6051–6060(2005). [CrossRef]
  16. L. Mandel and E. Wolf, “Random (or stochastic) processes,” in Optical Coherence and Quantum Optics (Cambridge University, 1995), pp. 41–88.
  17. J. W. Goodman, “Some first-order properties of light waves,” in Statistical Optics (Wiley, 1985), pp. 116–156.
  18. J. Tervo, T. Setälä, and A. T. Friberg, “Theory of partially coherent electromagnetic fields in the space-frequency domain,” J. Opt. Soc. Am. A 21, 2205–2215 (2004). [CrossRef]
  19. A. Roueff and Ph. Réfrégier, “Separation technique of a mixing of two uncorrelated and perfectly polarized lights with different coherence and polarization properties,” J. Opt. Soc. Am. A 25, 838–845 (2008). [CrossRef]
  20. Ph. Réfrégier, M. Zerrad, and C. Amra, “Coherence and polarization properties in speckle of totally depolarized light scattered by totally depolarizing media,” Opt. Lett. 37, 205–207(2012). [CrossRef]
  21. Ph. Réfrégier, J. Tervo, and A. Roueff, “A temporal-coherence anisotropy of unpolarized light,” Opt. Commun. 282, 1069–1073 (2009). [CrossRef]
  22. J. Tervo, Ph. Réfrégier, and A. Roueff, “Minimum number of modulated Stokes parameters in Young’s interference experiment,” J. Opt. A 10, 3074–3076 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited