OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2226–2229

Geometric phase of an elliptical polariscope

Władysław A. Woźniak and Piotr Kurzynowski  »View Author Affiliations

JOSA A, Vol. 29, Issue 10, pp. 2226-2229 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (156 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The exact formula for calculating the geometric phase in an elliptical polariscope with arbitrary oriented elliptically birefringent nondichroic medium has been presented. The visualization of the obtained results using the Poincaré sphere representation allows the prediction of the effect of the setup geometry on the final result.

© 2012 Optical Society of America

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(260.5430) Physical optics : Polarization
(350.1370) Other areas of optics : Berry's phase

ToC Category:
Physical Optics

Original Manuscript: July 12, 2012
Revised Manuscript: September 7, 2012
Manuscript Accepted: September 11, 2012
Published: September 26, 2012

Władysław A. Woźniak and Piotr Kurzynowski, "Geometric phase of an elliptical polariscope," J. Opt. Soc. Am. A 29, 2226-2229 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. http://science.jrank.org/pages/2655/Eye.html .
  2. S. Pancharatnam, “Generalized theory of interference and its applications. Part I. Coherent pencils,” Proc. Indian Acad. Sci. A 44, 247–262 (1956).
  3. M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt. 34, 1401–1407 (1987). [CrossRef]
  4. G. D. Love, “The unbounded nature of geometrical and dynamical phases in polarization optics,” Opt. Commun. 131, 236–240 (1996). [CrossRef]
  5. R. Bhandari, “SU (2) phase jump and geometrical phases,” Phys. Lett. A 157, 221–225 (1991). [CrossRef]
  6. T. H. Chyba, L. J. Wang, L. Mandel, and R. Simon, “Measurement of the Pancharatnam phase for a light beam,” Opt. Lett. 13, 562–564 (1988). [CrossRef]
  7. E. J. Galvez, P. R. Crawford, H. I. Sztul, M. J. Pysher, P. J. Haglin, and R. E. Williams, “Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum,” Phys. Rev. Lett. 90, 1–4 (2003). [CrossRef]
  8. Y. Ben-Aryeh, “Berry and Pancharatnam topological phases of atomic and optical systems,” J. Opt. B 6, R1–R18 (2004). [CrossRef]
  9. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Manipulation of the Pancharatnam phase in vectorial vortices,” Opt. Express 14, 4208–4220 (2006). [CrossRef]
  10. J. Courtial, “Wave plates and the Pancharatnam phase,” Opt. Commun. 171, 179–183 (1999). [CrossRef]
  11. P. Kurzynowski, W. A. Woźniak, and M. Szarycz, “Geometric phase: two triangles on the Poincaré sphere,” J. Opt. Soc. Am. A 28, 475–482 (2011). [CrossRef]
  12. P. Kurzynowski and W. A. Woźniak, “Geometric phase for dichroic media,” J. Opt. Soc. Am. A 28, 1949–1953 (2011). [CrossRef]
  13. D. Goldstein, “The Stokes polarization parameters,” in Polarized Light, Revised and Expanded (Dekker, 1993), pp. 31–64.
  14. D. Goldstein, “The Mueller matrices for polarizing components,” in Polarized Light, Revised and Expanded (Dekker, 1993), pp. 65–86.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited