OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 2367–2375

Understanding the twin-image problem in phase retrieval

Manuel Guizar-Sicairos and James R. Fienup  »View Author Affiliations


JOSA A, Vol. 29, Issue 11, pp. 2367-2375 (2012)
http://dx.doi.org/10.1364/JOSAA.29.002367


View Full Text Article

Enhanced HTML    Acrobat PDF (1673 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The twin-image problem in phase retrieval is characterized by the simultaneous occurrence of features from the original object and its inversion about the origin (twin image). This problem can occur in reconstructions for which the object support is centrosymmetric or loose, and in severe cases it can greatly hinder image quality. In this paper we examine this problem and find that it arises when the retrieved Fourier-domain phase is divided into sets of regions, some of which reconstruct the object while others the twin. We examine sample reconstructions that present the twin-image problem to different extents and find that, even when the twin-image problem is not visually evident, it can exist in small regions of the retrieved Fourier phase. The reduced-support constraint approach is shown to be effective in escaping stagnation caused by the twin-image problem.

© 2012 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(100.3010) Image processing : Image reconstruction techniques
(100.5070) Image processing : Phase retrieval
(110.7440) Imaging systems : X-ray imaging

ToC Category:
Image Processing

History
Original Manuscript: June 6, 2012
Manuscript Accepted: September 6, 2012
Published: October 18, 2012

Virtual Issues
October 23, 2012 Spotlight on Optics

Citation
Manuel Guizar-Sicairos and James R. Fienup, "Understanding the twin-image problem in phase retrieval," J. Opt. Soc. Am. A 29, 2367-2375 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-11-2367


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Gonsalves and R. Childlaw, “Wavefront sensing by phase retrieval,” Proc. SPIE 207, 32–39 (1979).
  2. J. R. Fienup, “Phase-retrieval algorithms for a complicated optical system,” Appl. Opt. 32, 1737–1746 (1993). [CrossRef]
  3. G. R. Brady and J. R. Fienup, “Nonlinear optimization algorithm for retrieving the full complex pupil function,” Opt. Express 14, 474–486 (2006). [CrossRef]
  4. M. R. Bolcar and J. R. Fienup, “Sub-aperture piston phase diversity for segmented and multi-aperture systems,” Appl. Opt. 48, A5–A12 (2009). [CrossRef]
  5. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27–29 (1978). [CrossRef]
  6. J. R. Fienup, “Lensless coherent imaging by phase retrieval with an illumination pattern constraint,” Opt. Express 14, 498–508 (2006). [CrossRef]
  7. M. Guizar-Sicairos, and J. R. Fienup, “Phase retrieval with Fourier-weighted projections,” J. Opt. Soc. Am. A 25, 701–709 (2008). [CrossRef]
  8. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999). [CrossRef]
  9. D. Shapiro, P. Thibault, T. Beetz, V. Elser, M. Howells, C. Jacobsen, J. Kirz, E. Lima, H. Miao, A. M. Neiman, and D. Sayre, “Biological imaging by soft x-ray diffraction microscopy,” Proc. Natl. Acad. Sci. USA 102, 15343–15346 (2005). [CrossRef]
  10. H. N. Chapman, A. Barty, S. Marchesini, A. Noy, S. P. Hau-Riege, C. Cui, M. R. Howells, R. Rosen, H. He, J. C. H. Spence, U. Weierstall, T. Beetz, C. Jacobsen, and D. Shapiro, “High-resolution ab initio three-dimensional x-ray diffraction microscopy,” J. Opt. Soc. Am. A 23, 1179–1200 (2006). [CrossRef]
  11. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2005).
  12. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef]
  13. V. Elser, “Phase retrieval by iterated projections,” J. Opt. Soc. Am. A 20, 40–55 (2003). [CrossRef]
  14. H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Hybrid projection-reflection method for phase retrieval,” J. Opt. Soc. Am. A 20, 1025–1034 (2003). [CrossRef]
  15. C. Chen, J. Miao, C. W. Wang, and T. K. Lee, “Application of optimization technique to noncrystalline x-ray diffraction microscopy: guided hybrid input—output method,” Phys. Rev. B 76, 064113 (2007). [CrossRef]
  16. R. H. T. Bates and D. G. H. Tan, “Fourier phase retrieval when the image is complex,” Proc. SPIE 0558, 54–59 (1985). [CrossRef]
  17. J. R. Fienup, “Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint,” J. Opt. Soc. Am. A 4, 118–123 (1987). [CrossRef]
  18. R. G. Paxman, J. R. Fienup, and J. T. Clinthorne, “Effect of tapered illumination and Fourier intensity errors on phase retrieval,” Proc. SPIE 0828, 184–189 (1987).
  19. J. R. Fienup, T. R. Crimmins, and W. Holsztynski, “Reconstruction of the support of an object from the support of its autocorrelation,” J. Opt. Soc. Am. 72, 610–624 (1982). [CrossRef]
  20. T. R. Crimmins, J. R. Fienup, and B. J. Thelen, “Improved bounds on object support from autocorrelation support and application to phase retrieval,” J. Opt. Soc. Am. A 7, 3–13 (1990). [CrossRef]
  21. J. R. Fienup, B. J. Thelen, M. F. Reiley, and R. G. Paxman, “3-D locator sets for opaque objects for phase retrieval,” Proc. SPIE 3170, 88–96 (1997). [CrossRef]
  22. M. Guizar-Sicairos and J. R. Fienup, “Holography with extended reference by autocorrelation linear differential operation,” Opt. Express 15, 17592–17612 (2007). [CrossRef]
  23. Y. M. Bruck and L. G. Sodin, “On the ambiguity of the image reconstruction problem,” Opt. Commun. 30, 304–308 (1979). [CrossRef]
  24. J. R. Fienup and C. C. Wackerman, “Phase-retrieval stagnation problems and solutions,” J. Opt. Soc. Am. A 3, 1897–1907 (1986). [CrossRef]
  25. E. Lima, L. Wiegart, P. Pernot, M. Howells, J. Timmins, F. Zontone, and A. Madsen, “Cryogenic x-ray diffraction microscopy for biological samples,” Phys. Rev. Lett. 103, 198102 (2009). [CrossRef]
  26. H. Chapman, “X-ray imaging beyond the limits,” Nat. Mater. 8, 299–301 (2009). [CrossRef]
  27. H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004). [CrossRef]
  28. M. Guizar-Sicairos and J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express 16, 7264–7278 (2008). [CrossRef]
  29. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008). [CrossRef]
  30. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33, 156–158 (2008). [CrossRef]
  31. J. R. Fienup, “Invariant error metrics for image reconstruction,” Appl. Opt. 36, 8352–8357 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (4357 KB)     
» Media 2: MOV (4369 KB)     
» Media 3: MOV (3925 KB)     
» Media 4: MOV (2985 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited