OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 2394–2405

Sensitivity study on the effects of hydrosol size and composition on linear polarization in absorbing and nonabsorbing clear and semi-turbid waters

Amit Lerner, Nadav Shashar, and Carynelisa Haspel  »View Author Affiliations


JOSA A, Vol. 29, Issue 11, pp. 2394-2405 (2012)
http://dx.doi.org/10.1364/JOSAA.29.002394


View Full Text Article

Enhanced HTML    Acrobat PDF (1745 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A full Mie scattering subroutine is employed to calculate what we call the linear polarization phase function (LPPF; percent polarization and e-vector orientation of radiation as a function of scattering angle) that results from refraction of the direct solar beam from air into water followed by single scattering by spherical hydrosols. The separate effects of refraction at the air–water interface, hydrosol size, the real and imaginary parts of the hydrosol refractive index, and absorption by the surrounding medium (water) on the LPPF are investigated. All of the above factors are found to alter the LPPF, changing the value of the maximum percent polarization (Pmax), the location of Pmax, the number of fluctuations in the LPPF, or the location of the neutral points (points of 0 percent polarization), though absorption by the surrounding medium is found to have only a minimal effect. The character and extent of the influence on the LPPF is found to depend on the scattering regime (Rayleigh, Mie, or geometric optics). We conclude that in calculating underwater polarization, it is important to take into consideration Mie scattering even in relatively clear waters. We also find a coupling between the partial polarization and the e-vector orientation, which suggests that for some polarization-based visual tasks, only one of these would suffice. Other implications for aquatic animal polarization vision are discussed.

© 2012 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.4458) Atmospheric and oceanic optics : Oceanic scattering
(290.5855) Scattering : Scattering, polarization
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: May 7, 2012
Revised Manuscript: August 10, 2012
Manuscript Accepted: September 14, 2012
Published: October 22, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Amit Lerner, Nadav Shashar, and Carynelisa Haspel, "Sensitivity study on the effects of hydrosol size and composition on linear polarization in absorbing and nonabsorbing clear and semi-turbid waters," J. Opt. Soc. Am. A 29, 2394-2405 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-11-2394


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Sabbah, A. Lerner, C. Erlick, and N. Shashar, “Under water polarization vision—a physical examination,” in Recent Research Developments in Experimental & Theoretical Biology, S. G. Pandalai, ed. (Transworld Research Network, 2005), pp. 123–176.
  2. T. H. Waterman, “Polarization sensitivity,” in Comparative Physiology and Evolution of Vision in Invertebrates B: Invertebrates Visual Centers and Behavior I, H. Autrum, ed. (Springer-Verlag, 1981), pp. 281–469.
  3. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  4. A. T. Young, “Revised depolarization corrections for atmospheric extinction,” Appl. Opt. 19, 3427–3428 (1980). [CrossRef]
  5. G. Horvath and R. Wehner, “Skylight polarization as perceived by desert ants and measured by video polarimetry,” J. Comp. Physiol. A 184, 1–7 (1999). [CrossRef]
  6. G. Horváth and D. Varjú, Polarized Light in Animal Vision: Polarization Patterns in Nature (Springer Verlag, 2004).
  7. G. Horváth and D. Varjú, “Underwater refraction-polarization patterns of skylight perceived by aquatic animals through Snell’s window of the flat water surface,” Vis. Res. 35, 1651–1666 (1995). [CrossRef]
  8. S. Sabbah, A. Barta, J. Gal, G. Horvath, and N. Shashar, “Experimental and theoretical study of skylight polarization transmitted through Snell’s window of a flat water surface,” J. Opt. Soc. Am. A 23, 1978–1988 (2006). [CrossRef]
  9. A. Tonizzo, J. Zhou, A. Gilerson, M. S. Twardowski, D. J. Gray, R. A. Arnone, B. M. Gross, F. Moshary, and S. A. Ahmed, “Polarized light in coastal waters: hyperspectral and multiangular analysis,” Opt. Express 17, 5666–5683 (2009). [CrossRef]
  10. A. Ivanoff and T. H. Waterman, “Factors, mainly depth and wavelength, affecting the degree of underwater light polarization,” J. Mar. Res. 16, 283–307 (1958).
  11. V. A. Timofeyeva, “The degree of polarization of light in turbid media,” Izv. Acad. Sci., USSR, Atmos. Oceanic Phys. (Engl. Transl.) 6, 513–522 (1970).
  12. V. A. Timofeyeva, “Spatial distribution of the degree of polarization of natural light in the sea,” Izv. Acad. Sci., USSR, Atmos. Oceanic Phys. (Engl. Transl.) 12, 1160–1164 (1962).
  13. T. W. Cronin and N. Shashar, “The linearly polarized light field in clear, tropical marine waters: spatial and temporal variation of light intensity, degree of polarization and e-vector angle,” J. Exp. Biol. 204, 2461–2467 (2001).
  14. Y. You, A. Tonizzo, A. A. Gilerson, M. E. Cummings, P. Brady, J. M. Sullivan, M. S. Twardowski, H. M. Dierssen, S. A. Ahmed, and G. W. Kattawar, “Measurements and simulations of polarization states of underwater light in clear oceanic waters,” Appl. Opt. 50, 4873–4893 (2011). [CrossRef]
  15. K. J. Voss and N. Souaidia, “POLRADS: polarization radiance distribution measurement system,” Opt. Express 18, 19672–19680 (2010). [CrossRef]
  16. C. D. Mobley, Light and Water (Academic, 1994).
  17. A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N. Jerlov and E. Steeman Nielsen, eds. (Academic, 1974), pp. 1–24.
  18. X. Zhang and L. Hu, “Estimating scattering of pure water from density fluctuation of the refractive index,” Opt. Express 17, 1671–1678 (2009). [CrossRef]
  19. X. Zhang, L. Hu, and M.-X. He, “Scattering by pure seawater: effect of salinity,” Opt. Express 17, 5698–5710 (2009). [CrossRef]
  20. M. Jonasz and G. R. Fournier, Light Scattering by Particles in Water: Theoretical and Experimental Foundations (Academic, 2007).
  21. A. Morel, “Diffusion de la lumière par les eaux de mer. Résultats expérimentaux et approche théorique,” in Optics of the Sea, AGARD: Lecture Series (NATO, 1973), pp. 3.1.1–3.1.76.
  22. J. Cabannes, La diffusion moléculaire de la lumière (Presses Universitaires de France, 1929).
  23. M. Chami, R. Santer, and E. Dilligeard, “Radiative transfer model for the computation of radiance and polarization in an ocean-atmosphere system: polarization properties of suspended matter for remote sensing,” Appl. Opt. 40, 2398–2416 (2001). [CrossRef]
  24. J. K. Lotsberg and J. J. Stamnes, “Impact of particulate oceanic composition on the radiance and polarization of underwater and backscattered light,” Opt. Express 18, 10432–10445 (2010). [CrossRef]
  25. C. N. Adams and D. J. Gray, “Neutral points in an atmosphere-ocean system. 2: downwelling light field,” Appl. Opt. 50, 335–346 (2011). [CrossRef]
  26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  27. G. W. Kattawar, “Polarization of light in the ocean,” in Ocean Optics, R. W. Spinrad, K. L. Carder, and M. J. Perry, eds. (Oxford University, 1994), pp. 202–225.
  28. J. W. Hovenier and C. V. M. Van der Mee, “Fundamental reletionships relevant to the transfer of polarized light in a scattering atmosphere,” Astron. Astrophys. 128, 1–16 (1983).
  29. A. Sigalov, The Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel (personal communication, 2008).
  30. E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dickey, “Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. Oceans 106, 9509–9516 (2001). [CrossRef]
  31. N. G. Jerlov, Marine Optics (Elsevier Scientific, 1976), p. 231.
  32. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27–56 (2004). [CrossRef]
  33. T. J. Petzold, “Volume scattering functions for selected natural waters,” in Light in the Sea, J. E. Tyler, ed. (Dowden, Hutchinson & Ross, 1977), pp. 150–174.
  34. P. Laven, “MiePlot v4.2,” http://www.philiplaven.com/mieplot.htm .
  35. P. C. Y. Chang, J. G. Walker, and K. I. Hopcraft, “Ray tracing in absorbing media,” J. Quant. Spectrosc. Radiat. Transfer 96, 327–341 (2005). [CrossRef]
  36. Q. Fu and W. Sun, “Mie theory for light scattering by a spherical particle in an absorbing medium,” Appl. Opt. 40, 1354–1361 (2001). [CrossRef]
  37. Q. Fu and W. Sun, “Apparent optical properties of spherical particles in absorbing medium,” J. Quant. Spectrosc. Radiat. Transfer 100, 137–142 (2006). [CrossRef]
  38. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef]
  39. A. Sinyuk, O. Torres, and O. Dubovik, “Combined use of satellite and surface observations to infer the imaginary part of refractive index of Saharan dust,” Geophys. Res. Lett. 30, 53-1–53-4 (2003). [CrossRef]
  40. D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001). [CrossRef]
  41. A. Lerner, S. Sabbah, C. Erlick, and N. Shashar, “Navigation by light polarization in clear and turbid waters,” Phil. Trans. R. Soc. B 366, 671–679 (2011). [CrossRef]
  42. N. Shashar, R. T. Hanlon, and A. D. Petz, “Polarization vision helps detect transparent prey,” Nature 393, 222–223 (1998). [CrossRef]
  43. S. Sabbah and N. Shashar, “Polarization contrast of zooplankton: a model for polarization-based sighting distance,” Vis. Res. 46, 444–456 (2006). [CrossRef]
  44. N. Shashar, S. Johnsen, A. Lerner, S. Sabbah, C.-C. Chiao, L. M. Mathger, and R. T. Hanlon, “Underwater linear polarization: physical limitations to biological functions,” Phil. Trans. R. Soc. B 366, 649–654 (2011). [CrossRef]
  45. M. J. Henze and T. Labhart, “Haze, clouds and limited sky visibility: polarotactic orientation of crickets under difficult stimulus conditions,” J. Exp. Biol. 210, 3266–3276 (2007). [CrossRef]
  46. G. Kriska, P. Malik, Z. Csabai, and G. Horváth, “Why do highly polarizing black burnt-up stubble-fields not attract aquatic insects? An exception proving the rule,” Vis. Res. 46, 4382–4386 (2006). [CrossRef]
  47. R. Hegedu¨s, S. Akesson, R. Wehner, and G. Horváth, “Could Vikings have navigated under foggy and cloudy conditions by skylight polarization? On the atmospheric optical prerequisites of polarimetric Viking navigation under foggy and cloudy skies,” Proc. R. Soc. A 463, 1081–1095 (2007). [CrossRef]
  48. N. Shashar and T. W. Cronin, “Polarization contrast vision in octopus,” J. Exp. Biol. 199, 999–1004 (1996).
  49. J. Marshall, T. W. Cronin, and S. Kleinlogel, “Stomatopod eye structure and function: a review,” Arthropod Struct. Devel. 36, 420–448 (2007). [CrossRef]
  50. T. Labhart and E. P. Meyer, “Neural mechanisms in insect navigation: polarization compass and odometer,” Curr. Opin. Neurobiol. 12, 707–714 (2002). [CrossRef]
  51. A. Lerner, N. Meltser, N. Sapir, C. Erlick, N. Shashar, and M. Broza, “Reflected polarization guides chironomid females to oviposition sites,” J. Exp. Biol. 211, 3536–3543 (2008). [CrossRef]
  52. N. Shashar, C. A. Milbury, and R. T. Hanlon, “Polarization vision in cephalopods: neuroanatomical and behavioral features that illustrate aspects of form and function,” Mar. Freshw. Behav. Physiol. 35, 57–68 (2002). [CrossRef]
  53. R. Schwind, “Daphnia pulex swims towards the most strongly polarized light: a response that leads to ‘shore flight’,” J. Exp. Biol. 202, 3631–3635 (1999).
  54. C. W. Hawryshyn, “Mechanisms of ultraviolet polarization vision in fishes,” in Sensory Processing in Aquatic Environments, S. P. Collin and N. J. Marshall, eds. (Springer, 2003), pp. 252–265.
  55. L. Cartron, N. Yossef, A. Lerner, S. D. McCusker, A.-S. Darmaillacq, L. Dickel, and N. Shashar, “Polarization vision can improve object detection in turbid waters by cuttlefish,” J. Exp. Mar. Biol. Ecol. (to be published).
  56. S. Johnsen, N. J. Marshall, and E. A. Widder, “Polarization sensitivity as a contrast enhancer in pelagic predators: lessons from in situ polarization imaging of transparent zooplankton,” Phil. Trans. R. Soc. B 366, 655–670 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited