OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 2428–2438

Semidefinite programming for model-based sensorless adaptive optics

Jacopo Antonello, Michel Verhaegen, Rufus Fraanje, Tim van Werkhoven, Hans C. Gerritsen, and Christoph U. Keller  »View Author Affiliations


JOSA A, Vol. 29, Issue 11, pp. 2428-2438 (2012)
http://dx.doi.org/10.1364/JOSAA.29.002428


View Full Text Article

Enhanced HTML    Acrobat PDF (703 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wavefront sensorless adaptive optics methodologies are widely considered in scanning fluorescence microscopy where direct wavefront sensing is challenging. In these methodologies, aberration correction is performed by sequentially changing the settings of the adaptive element until a predetermined image quality metric is optimized. An efficient aberration correction can be achieved by modeling the image quality metric with a quadratic polynomial. We propose a new method to compute the parameters of the polynomial from experimental data. This method guarantees that the quadratic form in the polynomial is semidefinite, resulting in a more robust computation of the parameters with respect to existing methods. In addition, we propose an algorithm to perform aberration correction requiring a minimum of N+1 measurements, where N is the number of considered aberration modes. This algorithm is based on a closed-form expression for the exact optimization of the quadratic polynomial. Our arguments are corroborated by experimental validation in a laboratory environment.

© 2012 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(220.1000) Optical design and fabrication : Aberration compensation
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: July 6, 2012
Manuscript Accepted: September 18, 2012
Published: October 22, 2012

Citation
Jacopo Antonello, Michel Verhaegen, Rufus Fraanje, Tim van Werkhoven, Hans C. Gerritsen, and Christoph U. Keller, "Semidefinite programming for model-based sensorless adaptive optics," J. Opt. Soc. Am. A 29, 2428-2438 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-11-2428


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Hardy, Adaptive Optics for Astronomical Telescopes(Oxford University, 1998).
  2. M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. Ser. A 365, 2829–2843 (2007). [CrossRef]
  3. O. Azucena, J. Crest, J. Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, and J. Kubby, “Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons,” Opt. Express 18, 17521–17532 (2010). [CrossRef]
  4. J. W. Cha, J. Ballesta, and P. T. C. So, “Shack–Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt. 15, 046022 (2010). [CrossRef]
  5. M. Feierabend, M. Rückel, and W. Denk, “Coherence-gated wave-front sensing in strongly scattering samples,” Opt. Lett. 29, 2255–2257 (2004). [CrossRef]
  6. S. A. Rahman and M. J. Booth, “Adaptive optics for high-resolution microscopy: wave front sensing using back scattered light,” Proc. SPIE 8253, 82530I (2012). [CrossRef]
  7. T. van Werkhoven, H. Truong, J. Antonello, R. Fraanje, H. Gerritsen, M. Verhaegen, and C. Keller, “Coherence-gated wavefront sensing for microscopy using fringe analysis,” Proc. SPIE 8253, 82530E (2012). [CrossRef]
  8. R. Aviles-Espinosa, J. Andilla, R. Porcar-Guezenec, O. E. Olarte, M. Nieto, X. Levecq, D. Artigas, and P. Loza-Alvarez, “Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy,” Biomed. Opt. Express 2, 3135–3149 (2011). [CrossRef]
  9. X. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics confocal microscopy using direct wavefront sensing,” Opt. Lett. 36, 1062–1064 (2011). [CrossRef]
  10. A. Leray and J. Mertz, “Rejection of two-photon fluorescence background in thick tissue by differential aberration imaging,” Opt. Express 14, 10565–10573 (2006). [CrossRef]
  11. L. Murray, J. C. Dainty, and E. Daly, “Wavefront correction through image sharpness maximisation,” Proc. SPIE 5823, 40–47 (2005). [CrossRef]
  12. P. Marsh, D. Burns, and J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003). [CrossRef]
  13. A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67, 36–44 (2005). [CrossRef]
  14. O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25, 52–54 (2000). [CrossRef]
  15. W. Lubeigt, S. P. Poland, G. J. Valentine, A. J. Wright, J. M. Girkin, and D. Burns, “Search-based active optic systems for aberration correction in time-independent applications,” Appl. Opt. 49, 307–314 (2010). [CrossRef]
  16. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002). [CrossRef]
  17. S. P. Poland, A. J. Wright, and J. M. Girkin, “Evaluation of fitness parameters used in an iterative approach to aberration correction in optical sectioning microscopy,” Appl. Opt. 47, 731–736 (2008). [CrossRef]
  18. L. Murray, “Smart optics: wavefront sensor-less adaptive optics—image correction through sharpness maximisation,” Ph.D. thesis (National University of Ireland, 2007).
  19. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2009). [CrossRef]
  20. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20, 609–620 (2003). [CrossRef]
  21. M. A. Vorontsov, “Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion,” J. Opt. Soc. Am. A 19, 356–368 (2002). [CrossRef]
  22. G. Vdovin, “Optimization-based operation of micromachined deformable mirrors,” Proc. SPIE 3353, 902–909 (1998). [CrossRef]
  23. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998). [CrossRef]
  24. A. Facomprez, E. Beaurepaire, and D. Débarre, “Accuracy of correction in modal sensorless adaptive optics,” Opt. Express 20, 2598–2612 (2012). [CrossRef]
  25. A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express 15, 18209–18219 (2007). [CrossRef]
  26. M. J. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express 14, 1339–1352 (2006). [CrossRef]
  27. M. J. Booth, “Wavefront sensorless adaptive optics, modal wavefront sensing, and sphere packings,” Proc. SPIE 5553, 150–158 (2004). [CrossRef]
  28. M. J. Booth, “Wavefront sensorless adaptive optics for large aberrations,” Opt. Lett. 32, 5–7 (2007). [CrossRef]
  29. H. Linhai, and C. Rao, “Wavefront sensorless adaptive optics: a general model-based approach,” Opt. Express 19, 371–379 (2011). [CrossRef]
  30. D. Débarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express 15, 8176–8190 (2007). [CrossRef]
  31. D. Débarre, E. J. Botcherby, M. J. Booth, and T. Wilson, “Adaptive optics for structured illumination microscopy,” Opt. Express 16, 9290–9305 (2008). [CrossRef]
  32. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34, 2495–2497 (2009). [CrossRef]
  33. N. Olivier, D. Débarre, and E. Beaurepaire, “Dynamic aberration correction for multiharmonic microscopy,” Opt. Lett. 34, 3145–3147 (2009). [CrossRef]
  34. D. Débarre, A. Facomprez, and E. Beaurepaire, “Assessing correction accuracy in image-based adaptive optics,” Proc. SPIE 8253, 82530F (2012). [CrossRef]
  35. J. B. Pawley, ed., Handbook of Biological Confocal Microscopy (Plenum, 1995).
  36. W. Denk, J. Strickler, and W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef]
  37. H. Song, R. Fraanje, G. Schitter, H. Kroese, G. Vdovin, and M. Verhaegen, “Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system,” Opt. Express 18, 24070–24084 (2010). [CrossRef]
  38. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts & Company, 2004).
  39. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  40. T. S. Ross, “Limitations and applicability of the Maréchal approximation,” Appl. Opt. 48, 1812–1818 (2009). [CrossRef]
  41. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  42. B. Wang, and M. J. Booth, “Optimum deformable mirror modes for sensorless adaptive optics,” Opt. Commun. 282, 4467–4474 (2009). [CrossRef]
  43. G. Vdovin and M. Loktev, “Deformable mirror with thermal actuators,” Opt. Lett. 27, 677–679 (2002). [CrossRef]
  44. J. Antonello, R. Fraanje, H. Song, M. Verhaegen, H. Gerritsen, C. U. Keller, and T. van Werkhoven, “Data driven identification and aberration correction for model based sensorless adaptive optics,” Proc. SPIE 8436, 84360S (2012). [CrossRef]
  45. L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Rev. 38, 49–95 (1996). [CrossRef]
  46. M. Verhaegen and V. Verdult, Filtering and System Identification: A Least Squares Approach, 1st ed. (Cambridge University, 2007).
  47. J. Löfberg, “YALMIP : a toolbox for modeling and optimization in MATLAB,” in Proceedings of the 2004 IEEE International Symposium on Computer Aided Control System Design (IEEE, 2004), pp. 284–289.
  48. J. F. Sturm, “Using SEDUMI 1.02, a MATLAB toolbox for optimization over symmetric cones,” Optim. Methods Softw. 11, 625–653 (1999). [CrossRef]
  49. Y. Labit, D. Peaucelle, and D. Henrion, “SEDUMI INTERFACE 1.02: a tool for solving LMI problems with SEDUMI,” in Proceedings of the 2002 IEEE International Symposium on Computer Aided Control System Design (IEEE, 2002), pp. 272–277.
  50. G.-M. Dai, “Modified Hartmann-Shack wavefront sensing and iterative wavefront reconstruction,” Proc. SPIE 2201, 562–573 (1994). [CrossRef]
  51. M. Loktev, O. Soloviev, and G. Vdovin, Adaptive Optics Guide, 3rd ed. (OKO Technologies, 2008).
  52. M. A. A. Neil, M. J. Booth, and T. Wilson, “New modal wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 17, 1098–1107 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited