OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: 179–184

Experimental comparison of performance degradation from terahertz and infrared wireless links in fog

Ke Su, Lothar Moeller, Robert B. Barat, and John F. Federici  »View Author Affiliations

JOSA A, Vol. 29, Issue 2, pp. 179-184 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (671 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a lab setup for analyzing impairments of terahertz (THz) and infrared (IR) free space links caused by local refraction index changes in the signal’s propagation paths that could be induced by turbulence, particles, humidity, etc. A THz signal comprising a 2.5Gb/s data load modulated on a carrier at 625 GHz, is launched through a weather emulating chamber, detected, and its performance analyzed. An IR beam at 1.5 um wavelength carrying the same data load is superposed with the THz beam, propagating through the same weather conditions and also performance analyzed. We modulate the IR channel with a usual non-return-to-zero (NRZ) format but use duobinary coding for driving our THz source, which enables signaling at high data rate and higher output power. As both beams pass through the same channel perturbations and as their degradations are recorded simultaneously we can simultaneously compare the weather impact on both. We investigate scintillation and fog attenuation effects for the THz and IR signals by measuring bit error rates (BER), signal power, and phase front distortions.

© 2012 Optical Society of America

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(010.1615) Atmospheric and oceanic optics : Clouds
(040.2235) Detectors : Far infrared or terahertz
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 2, 2011
Revised Manuscript: November 8, 2011
Manuscript Accepted: November 12, 2011
Published: January 19, 2012

Ke Su, Lothar Moeller, Robert B. Barat, and John F. Federici, "Experimental comparison of performance degradation from terahertz and infrared wireless links in fog," J. Opt. Soc. Am. A 29, 179-184 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Cherry, “Edholm’s law of bandwidth,” IEEE Spectrum 41, 58–60 (2004). [CrossRef]
  2. P. Zhouyue and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag. 49, 101–107(2011).
  3. C. Jansen, R. Piesiewicz, D. Mittleman, T. Kurner, and M. Koch, “The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems,” IEEE Trans. Antennas Propag. 56, 1413–1419 (2008). [CrossRef]
  4. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107, 111101 (2010). [CrossRef]
  5. T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz 32, 143–171 (2011).
  6. R. Yamaguchi, A. Hirata, T. Kosugi, H. Takahashi, N. Kukutsu, T. Nagatsuma, Y. Kado, H. Ikegawa, H. Nishikawa, and T. Nakayama, “10-Gbit/s MMIC wireless link exceeding 800 meters,” in Radio and Wireless Symposium (IEEE, 2008), pp. 695–698.
  7. G. Ducournau, P. Szriftgiser, D. Bacquet, A. Beck, T. Akalin, E. Peytavit, M. Zaknoune, and J. F. Lampin, “Optically power supplied Gbit/s wireless hotspot using 1.55 um THz photomixer and heterodyne detection at 200 GHz,” Electron. Lett. 46, 1349–1351 (2010). [CrossRef]
  8. T. Nagatsuma, H. J. Song, Y. Fujimoto, K. Miyake, A. Hirata, K. Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, “Giga-bit wireless link using 300–400 GHz bands,” in MWP’09. International Topical Meeting on Microwave Photonics(Academic, 2009), pp. 1–4.
  9. L. Moeller, J. Federici, and K. Su, “2.5  Gbit/s duobinary signalling with narrow bandwidth 0.625 terahertz source,” Electron. Lett. 47, 856–858 (2011). [CrossRef]
  10. A. Hirata, R. Yamaguchi, H. Takahashi, T. Kosugi, K. Murata, N. Kukutsu, and Y. Kado, “Effect of rain attenuation for a 10-Gb/s 120-GHz-band millimeter-wave wireless link,” IEEE Trans. Microwave Theory Tech. 57, 3099–3105 (2009).
  11. C. M. Mann, “Towards terahertz communication systems,” in Terahertz Sources and Systems, R. Miles, P. Harrison, and D. Lippens, eds. (Academic, 2001), pp. 261–267.
  12. M. J. Rosker and H. B. Wallace, “Imaging through the atmosphere at terahertz frequencies,” in IEEE/MTT-S International Microwave Symposium (IEEE, 2007), pp. 773–776.
  13. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (Academic, 1998).
  14. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (Academic, 2001).
  15. T. Utsunomiya and M. Sekine, “Rain Attenuation at 103 GHz in Millimeter Wave Ranges,” Int. J. Infrared Milli. 26, 1651–1660 (2005).
  16. S. A. Khan, A. N. Tawfik, C. J. Gibbins, and B. C. Gremont, “Extra-high frequency line-of-sight propagation for future urban communications,” IEEE Trans. Antennas Propag. 51, 3109–3121 (2003). [CrossRef]
  17. A. Lender, “The duobinary technique for high-speed data transmission,” IEEE Trans. Commun. Electron. 82, 214–218(1963).
  18. D. Penninckx, M. Chbat, L. Pierre, and J. P. Thiery, “The phase-shaped binary transmission (PSBT): a new technique to transmit for beyond the chromatic dispersion limit,” in the 22nd European Conference on Optical Communications (ECOC 22)(Academic, 1996), pp. 173–176.
  19. T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Quantum Electron. 12, 544–554 (2006). [CrossRef]
  20. H. Le-Minh, Z. Ghassemlooy, M. Ijaz, S. Rajbhandari, O. Adebanjo, S. Ansari, and E. Leitgeb, “Experimental study of bit error rate of free space optics communications in laboratory controlled turbulence,” in GLOBECOM Workshops (IEEE, 2010), pp. 1072–1076.
  21. M. Ijaz, Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, J. Perez, and A. Gholami, “Bit error rate measurement of free space optical communication links under laboratory-controlled fog conditions,” in 16th European Conference on Networks and Optical Communications (NOC) (Academic, 2011), pp. 52–55.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited