OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A233–A239

The relationship between peripherally matched invariant hues and unique hues: a cone-contrast approach

Athanasios Panorgias, Janus J. Kulikowski, Neil R. A. Parry, Declan J. McKeefry, and Ian J. Murray  »View Author Affiliations

JOSA A, Vol. 29, Issue 2, pp. A233-A239 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (480 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A characteristic shift in hue and saturation occurs when colored targets are viewed peripherally compared with centrally. Four hues, one in each of the red, blue, green, and yellow regions of color space, remain unchanged when presented in the peripheral field. Apart from green, these peripherally invariant hues correspond almost exactly in color space with the unique hues. We explore this puzzling observation using asymmetric color-matching and color-naming experiments and computing cone contrasts for peripheral and central stimuli. We find that the difference between cone contrasts for the peripheral and central stimuli reaches a maximum at the chromatic axis corresponding to peripherally invariant green. We speculate that the effect is linked to a weakened signal from M-cones and probably associated with a reduced number of M-cones in peripheral retina.

© 2012 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(330.5380) Vision, color, and visual optics : Physiology
(330.5510) Vision, color, and visual optics : Psychophysics

ToC Category:
Mesopic and peripheral color vision

Original Manuscript: September 13, 2011
Revised Manuscript: December 7, 2011
Manuscript Accepted: December 8, 2011
Published: January 26, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Athanasios Panorgias, Janus J. Kulikowski, Neil R. A. Parry, Declan J. McKeefry, and Ian J. Murray, "The relationship between peripherally matched invariant hues and unique hues: a cone-contrast approach," J. Opt. Soc. Am. A 29, A233-A239 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Moreland and A. Cruz, “Colour perception with the peripheral retina,” Opt. Acta 6, 117–151 (1959). [CrossRef]
  2. U. Stabell and B. Stabell, “Color-vision mechanisms of the extrafoveal retina,” Vis. Res. 24, 1969–1975 (1984). [CrossRef]
  3. N. R. Parry, D. J. McKeefry, and I. J. Murray, “Variant and invariant color perception in the near peripheral retina,” J. Opt. Soc. Am. A 23, 1586–1597 (2006). [CrossRef]
  4. K. T. Mullen and F. A. Kingdom, “Differential distributions of red-green and blue-yellow cone opponency across the visual field,” Vis. Neurosci. 19, 109–118 (2002). [CrossRef]
  5. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982). [CrossRef]
  6. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  7. D. J. McKeefry, I. J. Murray, and N. R. Parry, “Perceived shifts in saturation and hue of chromatic stimuli in the near peripheral retina,” J. Opt. Soc. Am. A 24, 3168–3179 (2007). [CrossRef]
  8. C. Vakrou, D. Whitaker, P. V. McGraw, and D. McKeefry, “Functional evidence for cone-specific connectivity in the human retina,” J. Physiol. 566, 93–102 (2005). [CrossRef]
  9. D. R. Williams, D. I. MacLeod, and M. M. Hayhoe, “Foveal tritanopia,” Vis. Res. 21, 1341–1356 (1981). [CrossRef]
  10. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990). [CrossRef]
  11. C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991). [CrossRef]
  12. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999). [CrossRef]
  13. H. Knau, “Thresholds for detecting slowly changing Ganzfeld luminances,” J. Opt. Soc. Am. A 17, 1382–1387 (2000). [CrossRef]
  14. J. L. Nerger and C. M. Cicerone, “The ratio of L cones to M cones in the human parafoveal retina,” Vis. Res. 32, 879–888 (1992). [CrossRef]
  15. G. H. Jacobs, J. Neitz, and M. Neitz, “Genetic basis of polymorphism in the color vision of platyrrhine monkeys,” Vis. Res. 33, 269–274 (1993). [CrossRef]
  16. J. Kremers, T. Usui, H. P. Scholl, and L. T. Sharpe, “Cone signal contributions to electroretinograms [correction of electrograms] in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).
  17. N. K. Challa, D. McKeefry, N. R. Parry, J. Kremers, I. J. Murray, and A. Panorgias, “L- and M-cone input to 12 Hz and 30 Hz flicker ERGs across the human retina,” Ophthalmol. Physiol. Opt. 30, 503–510 (2010). [CrossRef]
  18. S. A. Hagstrom, J. Neitz, and M. Neitz, “Variations in cone populations for red–green color vision examined by analysis of mRNA,” NeuroReport 9, 1963–1967 (1998). [CrossRef]
  19. E. Hering, Outlines of a Theory of the Light Sense (Harvard University, 1964).
  20. L. M. Hurvich, Color Vision (Sinauer, 1981).
  21. J. D. Mollon and G. Jordan, “On the nature of unique hues,” in John Dalton’s Colour Vision Legacy, C. Dickinson, I. Murray, and D. Carden, eds. (Taylor & Francis, 1997), pp. 381–392.
  22. R. L. De Valois, K. K. De Valois, E. Switkes, and L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vis. Res. 37, 885–897 (1997). [CrossRef]
  23. M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. II. Unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000). [CrossRef]
  24. S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223(2005). [CrossRef]
  25. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).
  26. T. Indow, “Psychologically unique hues in aperture and surface colors,” Die Farbe 34, 253–260 (1987).
  27. A. Valberg, “Unique hues: an old problem for a new generation,” Vis. Res. 41, 1645–1657 (2001). [CrossRef]
  28. L. M. Hurvich and D. Jameson, “Some quantitative aspects of an opponent-colors theory. II Brightness, saturation, and hue in normal and dichromatic vision,” J. Opt. Soc. Am. 45, 602–616 (1955). [CrossRef]
  29. J. Gordon and I. Abramov, “Scaling procedures for specifying color appearance,” Color Res. Appl. 13, 146–152 (1988). [CrossRef]
  30. A. D. Logvinenko and L. L. Beattie, “Partial hue-matching,” J. Vision 11 (8), 6 (2011). [CrossRef]
  31. A. D. Logvinenko, “A theory of unique hues and colour categories in the human colour vision,” Color Res. Appl., doc. ID 20661, doi:10.1002/col.20661 (to be published). [CrossRef]
  32. R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vis. Res. 33, 1053–1065 (1993). [CrossRef]
  33. S. L. Buck, R. F. Knight, and J. Bechtold, “Opponent-color models and the influence of rod signals on the loci of unique hues,” Vis. Res. 40, 3333–3344 (2000). [CrossRef]
  34. S. L. Buck, R. Knight, G. Fowler, and B. Hunt, “Rod influence on hue-scaling functions,” Vis. Res. 38, 3259–3263 (1998). [CrossRef]
  35. V. J. Volbrecht, J. L. Nerger, S. M. Imhoff, and C. J. Ayde, “Effect of the short-wavelength-sensitive-cone mosaic and rods on the locus of unique green,” J. Opt. Soc. Am. A 17, 628–634 (2000). [CrossRef]
  36. V. J. Volbrecht, J. L. Nerger, L. S. Baker, A. R. Trujillo, and K. Youngpeter, “Unique hue loci differ with methodology,” Ophthalmol. Physiol. Opt. 30, 545–552 (2010). [CrossRef]
  37. R. L. van der Veen, T. T. Berendschot, M. Makridaki, F. Hendrikse, D. Carden, and I. J. Murray, “Correspondence between retinal reflectometry and a flicker-based technique in the measurement of macular pigment spatial profiles,” J. Biomed. Opt. 14, 064046 (2009). [CrossRef]
  38. R. L. van der Veen, T. T. Berendschot, F. Hendrikse, D. Carden, M. Makridaki, and I. J. Murray, “A new desktop instrument for measuring macular pigment optical density based on a novel technique for setting flicker thresholds,” Ophthalmol. Physiol. Opt. 29, 127–137 (2009). [CrossRef]
  39. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975). [CrossRef]
  40. P. K. Kaiser and R. M. Boynton, Human Color Vision, 2nd ed. (Optical Society of America, 1996).
  41. A. Panorgias, J. J. Kulikowski, N. R. Parry, D. J. McKeefry, and I. J. Murray, “Naming versus matching and the stability of unique hues,” Ophthalmol. Physiol. Opt. 30, 553–559 (2010). [CrossRef]
  42. G. Jordan and J. D. Mollon, “Adaptation of colour vision to sunlight,” Nature 386, 135–136 (1997). [CrossRef]
  43. I. Abramov, J. Gordon, and H. Chan, “Color appearance in the peripheral retina: effects of stimulus size,” J. Opt. Soc. Am. A 8, 404–414 (1991). [CrossRef]
  44. S. A. Burns, A. E. Elsner, J. Pokorny, and V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984). [CrossRef]
  45. K. Knoblauch and S. K. Shevell, “Relating cone signals to color appearance: failure of monotonicity in yellow/blue,” Vis. Neurosci. 18, 901–906 (2001). [CrossRef]
  46. J. A. Endler, “The color of light in forests and its implications,” Ecolog. Monogr. 63, 1–27 (1993). [CrossRef]
  47. J. K. Bowmaker, J. W. L. Parry, and J. D. Mollon, “The arrangement of L and M cones in human and a primate retina,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 39–50.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited