OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A314–A323

Psychophysical and physiological responses to gratings with luminance and chromatic components of different spatial frequencies

Bonnie Cooper, Hao Sun, and Barry B. Lee  »View Author Affiliations


JOSA A, Vol. 29, Issue 2, pp. A314-A323 (2012)
http://dx.doi.org/10.1364/JOSAA.29.00A314


View Full Text Article

Enhanced HTML    Acrobat PDF (1273 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Gratings that contain luminance and chromatic components of different spatial frequencies were used to study the segregation of signals in luminance and chromatic pathways. Psychophysical detection and discrimination thresholds to these compound gratings, with luminance and chromatic components of the one either half or double the spatial frequency of the other, were measured in human observers. Spatial frequency tuning curves for detection of compound gratings followed the envelope of those for luminance and chromatic gratings. Different grating types were discriminable at detection threshold. Fourier analysis of physiological responses of macaque retinal ganglion cells to compound waveforms showed chromatic information to be restricted to the parvocellular pathway and luminance information to the magnocellular pathway. Taken together, the human psychophysical and macaque physiological data support the strict segregation of luminance and chromatic information in independent channels, with the magnocellular and parvocellular pathways, respectively, serving as likely the physiological substrates.

© 2012 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.1880) Vision, color, and visual optics : Detection
(330.5380) Vision, color, and visual optics : Physiology
(330.5510) Vision, color, and visual optics : Psychophysics

ToC Category:
Retinal and cortical color processing

History
Original Manuscript: September 12, 2011
Revised Manuscript: December 7, 2011
Manuscript Accepted: December 8, 2011
Published: February 1, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Bonnie Cooper, Hao Sun, and Barry B. Lee, "Psychophysical and physiological responses to gratings with luminance and chromatic components of different spatial frequencies," J. Opt. Soc. Am. A 29, A314-A323 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-2-A314


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. A. Parraga, G. Brelstaff, T. Troscianko, and I. R. Moorehead, “Color and luminance information in natural scenes,” J. Opt. Soc. Am. A 15, 563–569 (1998). [CrossRef]
  2. T. Wachtler, T. Lee, and T. J. Sejnowski, “Chromatic structure of natural scenes,” J. Opt. Soc. Am. A 18, 65–77 (2001). [CrossRef]
  3. G. J. Burton and I. R. Moorhead, “Color and spatial structure in natural scenes,” Appl. Opt. 26, 157–170 (1987). [CrossRef]
  4. G. Buchsbaum and A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. B 220, 89–113 (1983). [CrossRef]
  5. T. von der Twer and D. I. MacLeod, “Optimal nonlinear codes for the perception of natural colors,” Network 12, 395–407(2001).
  6. D. I. A. MacLeod and T. von der Twer, “The pleistochrome: optimal opponent codes for natural colours,” in Color Perception: Mind and the Physical World, R. Mausfeld and D. Heyer, eds. (Oxford University, 2003).
  7. H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filtered spectra,” Vis. Res. 22, 635–643 (1982). [CrossRef]
  8. C. R. Ingling and E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X channel,” Vis. Res. 23, 1495–1500 (1983). [CrossRef]
  9. P. Lennie and M. D. D’Zmura, “Mechanisms of color vision,” CRC Crit. Rev. Neurobiol. 3, 333–400 (1988).
  10. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  11. F. A. A. Kingdom and K. T. Mullen, “Separating colour and luminance information in the visual system,” Spatial Vision 9, 191–219 (1995). [CrossRef]
  12. E. Kaplan, B. B. Lee, and R. M. Shapley, “New views of primate retinal function,” Progr. Retinal Res. 9, 273–336 (1990). [CrossRef]
  13. R. M. Shapley, “Visual sensitivity and parallel retinocortical channels,” Annu. Rev. Psych. 41, 635–658 (1990). [CrossRef]
  14. B. B. Lee, “Visual pathways and psychophysical channels in the primate,” J. Physiol. 589, 41–47 (2011). [CrossRef]
  15. B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).
  16. D. M. Dacey, “Circuitry for color coding in the primate retina,” Proc. Natl. Acad. Sci. USA 93, 582–588 (1996). [CrossRef]
  17. C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008). [CrossRef]
  18. F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).
  19. J. Nachmias and A. Weber, “Discrimination of simple and complex gratings,” Vis. Res. 15, 217–223 (1975). [CrossRef]
  20. B. B. Lee, H. Sun, and A. Valberg, “Segregation of chromatic and luminance signals using a novel grating stimulus,” J. Physiol. 589, 59–73 (2011). [CrossRef]
  21. J. M. Crook, B. Lange-Malecki, B. B. Lee, and A. Valberg, “Visual resolution of macaque retinal ganglion cells,” J. Physiol. 396, 205–224 (1988).
  22. B. B. Lee, P. R. Martin, and A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989).
  23. B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990). [CrossRef]
  24. J. Pokorny, H. Smithson, and J. Quinlan, “Photostimulator allowing independent control of rods and the three cone types,” Vis. Neurosci. 21, 263–267 (2004). [CrossRef]
  25. S. Anstis and P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision Physiology and Psychophysics, J. D. Mollon and L. T. Sharpe, eds. (Academic, 1983), pp. 155–166.
  26. B. B. Lee, P. R. Martin, and A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433–1442 (1989).
  27. K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue–yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).
  28. A. B. Watson, “Temporal Sensitivity,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, and J. P. Thomas, eds. (Wiley, 1986), pp. 6-1–6-43.
  29. R. L. DeValois and K. K. DeValois, eds., Spatial Vision, Oxford Psychology Series (Oxford University, 1988).
  30. E. Switkes, A. Bradley, and K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162(1988). [CrossRef]
  31. T. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
  32. A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).
  33. B. B. Lee, R. M. Shapley, M. J. Hawken, and H. Sun, “Spatial distribution of cone inputs to cells of the parvocellular pathway,” J. Opt. Soc. Am. A 29, A223–A232 (2012).
  34. K. R. Gegenfurtner, “Cortical mechanisms of color vision,” Nat. Rev. Neurosci. 4, 563–572 (2003). [CrossRef]
  35. E. N. Johnson, M. J. Hawken, and R. Shapley, “Cone inputs in macaque primary visual cortex,” J. Neurophysiol. 91, 2501–2514 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited