OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A366–A376

Domain of metamers exciting intrinsically photosensitive retinal ganglion cells (ipRGCs) and rods

Françoise Viénot, Hans Brettel, Tuong-Vi Dang, and Jean Le Rohellec  »View Author Affiliations

JOSA A, Vol. 29, Issue 2, pp. A366-A376 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (892 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Any stimulus can be described as composed of two components—a fundamental color stimulus that controls the three cone responses and a metameric black that has no effect on cones but can drive photoreceptors other than cones [e.g., rods and melanopsin expressing retinal ganglion cells (ipRGCs)]. The Cohen and Kappauf [Am. J. Psychol. 95, 537 (1982)] method is extended to calculate the black metamer basis for a limited set of band spectra. Using seven colored LEDs, the method is exploited to produce real metamer illuminations that stimulate in parallel melanopsin expressing ipRGCs and rods, at most or at least. We have verified that the pupil diameter increases when the ipRGC and rod excitation is at a minimum. For 14 observers, the average relative increase is 12%.

© 2012 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(330.1720) Vision, color, and visual optics : Color vision
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(330.1715) Vision, color, and visual optics : Color, rendering and metamerism
(330.4595) Vision, color, and visual optics : Optical effects on vision

ToC Category:
Retinal and cortical color processing

Original Manuscript: September 1, 2011
Revised Manuscript: December 5, 2011
Manuscript Accepted: December 9, 2011
Published: February 1, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Françoise Viénot, Hans Brettel, Tuong-Vi Dang, and Jean Le Rohellec, "Domain of metamers exciting intrinsically photosensitive retinal ganglion cells (ipRGCs) and rods," J. Opt. Soc. Am. A 29, A366-A376 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295, 1070–1073 (2002). [CrossRef]
  2. S. Hattar, H. W. Liao, M. Takao, D. M. Berson, and K. W. Yau, “Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity,” Science 295, 1065–1070 (2002). [CrossRef]
  3. D. M. Dacey, H.-W. Liao, B. B. Peterson, F. R. Robinson, V. C. Smith, J. Pokorny, K.-W. Yau, and P. D. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005). [CrossRef]
  4. P. R. Jusuf, S. C. Lee, J. Hannibal, and U. Grünert, “Characterization and synaptic connectivity of ipRGC-containing ganglion cells in the primate retina,” Eur. J. Neurosci. 26, 2906–2921(2007). [CrossRef]
  5. M. T. Hoang Do and K.-W. Yau, “Intrinsically Photosensitive Retinal Ganglion Cells,” Physiol. Rev. 90, 1547–1581 (2010). [CrossRef]
  6. K. Y. Wong, F. A. Dunn, and D. M. Berson, “Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells,” Neuron 48, 1001–1010 (2005). [CrossRef]
  7. T. M. Schmidt and P. Kofuji, “Functional and morphological differences among intrinsically photosensitive retinal ganglion cells,” J. Neurosci. 29, 476–482 (2009). [CrossRef]
  8. D. C. Tu, D. Zhang, J. Demas, E. B. Slutsky, I. Provencio, T. E. Holy, and R. N. Van Gelder, “Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells,” Neuron 48, 987–999 (2005). [CrossRef]
  9. R. J. Lucas, S. Hattar, M. Takao, D. M. Berson, R. G. Foster, and K. W. Yau, “Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice,” Science 299, 245–247 (2003). [CrossRef]
  10. P. D. R. Gamlin, D. H. McDougal, J. Pokorny, V. C. Smith, K. W. Yau, and D. M. Dacey, “Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells,” Vis. Res. 47, 946–954 (2007). [CrossRef]
  11. E. L. Markwell, B. Feigl, and A. J. Zele, “Intrinsically photosensitive melanopsin retinal ganglion cell contributions to the pupillary light reflex and circadian rhythm,” Clin. Exp. Optom. 93, 137–149 (2010). [CrossRef]
  12. Y. Fu, H. Zhong, M.-H. H. Wang, D.-G. Luo, H.-W. Liao, H. Maeda, S. Hattar, L. J. Frishman, and K.-W. Yau, “Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, ipRGC,” Proc. Natl. Acad. Sci. USA 102, 10339–10344 (2005). [CrossRef]
  13. L. S. Mure, P.-L. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4(6), e5991, 1–10 (2009), www.plosone.org . [CrossRef]
  14. S. Panda, S. K. Nayak, B. Campo, J. R. Walker, J. B. Hogenesch, and T. Jegla, “Illumination of the IpRGC signaling pathway,” Science 307, 600–604 (2005). [CrossRef]
  15. M. W. Hankins, S. N. Peirson, and R. G. Foster, “Melanopsin: an exciting photopigment,” Trends Neurosci. 31, 27–36 (2008). [CrossRef]
  16. K. Mawad and R. N. Van Gelder, “Absence of longwavelength photic potentiation of murine intrinsically photosensitive retinal ganglion cell firing in vitro,” J. Biol. Rhythms 23, 387–391 (2008). [CrossRef]
  17. D. H. McDougal and P. D. Gamlin, “The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex,” Vis. Res. 50, 72–87 (2010). [CrossRef]
  18. M. Alpern and F. W. Campbell, “The behaviour of the pupil during dark-adaptation,” J. Physiol. 165 (Suppl), 5P–7P (1963).
  19. L. Kankipati, C. A. Girkin, and P. D. Gamlin, “Post-illumination Pupil Response in Subjects without Ocular Disease,” Investig. Ophthalmol. Vis. Sci. 51, 2764–2769 (2010). [CrossRef]
  20. R. S. L. Young and E. Kimura, “Pupillary correlates of light-evoked melanopsin activity in humans,” Vis. Res. 48, 862–871 (2008). [CrossRef]
  21. D. H. Sliney, “From photobiological science to lighting applications,” in Proceedings of the 2nd CIE Expert Symposium on Lighting and Health, CIE x031:2006 (2006), pp. 1–5.
  22. G. C. Brainard, D. Sliney, J. P. Hanifin, G. Glickman, B. Byrne, J. M. Greeson, S. Jasser, E. Gerner, and M. D. Rollag, “Sensitivity of the human circadian system to short-wavelength (420-nm) light,” J. Biol. Rhythms 23, 379–386 (2008). [CrossRef]
  23. S. Tsujimura, K. Ukai, D. Ohama, A. Nuruki, and K. Yunokuchi, “Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses,” Proc. R. Soc. B 277(1693), 2485–2492 (2010). [CrossRef]
  24. F. Viénot, S. Bailacq, and J. Le Rohellec, “The effect of controlled photopigment excitations on pupil aperture,” Ophthal. Physiol. Opt. 30, 484–491 (2010). [CrossRef]
  25. G. Wyszecki, “Evaluation of metameric colors,” J. Opt. Soc. Am. 48, 451–452 (1958). [CrossRef]
  26. J. B. Cohen and W. E. Kappauf, “Metameric color stimuli, fundamental metamers, and Wyszecki’s metameric blacks,” Am. J. Psychol. 95, 537–564 (1982). [CrossRef]
  27. A. Stockman and L. T. Sharpe, “Cone spectral sensitivities and color matching,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds. (Cambridge University Press, 2000), pp. 53–87, http://www.cvrl.org .
  28. CIE, “Fundamental chromaticity diagram with physiological axes—part 1,” CIE Publ.170-1:2006 (CIE, 2006).
  29. CIE, “International electrotechnical vocabulary,” CIE Publ. 17.4 (CIE, 1987), 845-01-22, http://www.electropedia.org/iev/iev.nsf/index?openform&part=845.
  30. M. T. H. Do, S. H. Kang, T. Xue, H. Zhong, H.-W. Liao, D. E. Bergles, and K.-W. Yau, “Photon capture and signalling by melanopsin retinal ganglion cells,” Nature 457, 281–288 (2009). [CrossRef]
  31. J. al Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A ‘melanopic’ spectral efficiency function predicts the sensitivity of IpRGC photoreceptors to polychromatic lights,” J. Biol. Rhythms 26, 314–323 (2011). [CrossRef]
  32. J. D. Bullough, M. G. Figueiro, B. P. Possidente, R. H. Parsons, and M. S. Rea, “Additivity in Murine Circadian Phototransduction,” Zool. Sci. 22, 223–227 (2005). [CrossRef]
  33. Colorimetry tables were downloaded at http://www.cvrl.org .
  34. L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A luminous efficiency function, VD65*(λ), for daylight adaptation: a correction,” Color Res. Appl. 36, 42–46 (2011). [CrossRef]
  35. Y. Le Grand, Light, Color and Vision, 2nd ed. (Chapman and Hall, 1968), p. 86, Eq. 59.
  36. D. van Norren and J. J. Vos, “Spectral transmission of the human ocular media,” Vis. Res. 14, 1237–1244 (1974). [CrossRef]
  37. O. Estevez and H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vis. Res. 22, 681–691 (1982). [CrossRef]
  38. W. S. Stiles, G. Wyszecki, and N. Ohta, “Counting metameric object-color stimuli using frequency-limited spectral reflectance functions,” J. Opt. Soc. Am. 67, 779–784 (1977). [CrossRef]
  39. A. G. Shapiro, J. Pokorny, and V. C. Smith, “Cone-rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra,” J. Opt. Soc. Am. A 13, 2319–2328(1996). [CrossRef]
  40. D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: Linear with rod contrast,” Vis. Res. 48, 2586–2592 (2008). [CrossRef]
  41. M. Aguilar, and W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954). [CrossRef]
  42. W. S. Stiles and J. M. Burch, “N.P.L. colour-matching investigation: final report,” Opt. Acta 6, 1–26 (1959). [CrossRef]
  43. A. Stockman, D. I. A. MacLeod, and N. E. Johnson, “Spectral sensitivities of human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993). [CrossRef]
  44. A. Sarkar, F. Autrusseau, F. Viénot, P. Le Callet, and L. Blondé, “From CIE 2006 physiological model to improved age-dependent and average colorimetric observers,” J. Opt. Soc. Am. A 28, 2033–2048 (2011). [CrossRef]
  45. J. L. Barbur, “Learning from the pupil—studies of basic mechanisms and clinical applications,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, eds. (MIT Press, 2004), Vol. 1, pp. 641–656.
  46. W. Bi and J. L. Barbur, “Revisiting pupil colour responses,” presented at the 21st Symposium of the International Colour Vision Society, Kongsberg, Norway, 1–5 July 2011.
  47. A. J. Zele, B. Feigl, S. S. Smith, and E. L. Markwell, “The circadian response of intrinsically photosensitive retinal ganglion cells,” PLoS ONE 6(3), doi: 10.1371/journal.pone.0017860, e17860 (2011). [CrossRef]
  48. CIE, “Method of measuring and specifying color rendering properties of light sources, CIE Publ. 13.2 (CIE, 1995).
  49. W. Davis and Y. Ohno, “Towards an improved color rendering metric,” Proc. SPIE 5941, 1G1–8 (2005).
  50. R. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Correlation between color quality metric predictions and visual appreciation of light sources,” Opt. Express 19, 8151–8166 (2011). [CrossRef]
  51. S. Boissard-Jost and M. Fontoynont, “Optimization of LED-based light blendings for object presentation,” Color Res. Appl. 34, 310–320 (2009). [CrossRef]
  52. ANSES, “Health effects of lighting systems using light-emitting diodes (LEDs),” opinion of the French agency for food, environmental and occupational health and safety in response to the internally solicited request (ANSES, 2010).
  53. F. Behar-Cohen, C. Martinsons, F. Viénot, G. Zissis, A. Barlier-Salsi, J. P. Cesarini, O. Enouf, M. Garcia, S. Picaud, and D. Attia, “Light-emitting diodes (LED) for domestic lighting: Any risks for the eye?” Prog. Retin. Eye Res. 30, 239–257 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited