OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 231–238

Modeling the diffuse reflectance due to a narrow beam incident on a turbid medium

Shelley B. Rohde and Arnold D. Kim  »View Author Affiliations

JOSA A, Vol. 29, Issue 3, pp. 231-238 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (383 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a model for the diffuse reflectance when a continuous beam is incident normally on a half space composed of a uniform scattering and absorbing medium. This model is the result of an asymptotic analysis of the radiative transport equation for strong scattering, weak absorption, and a narrow beam width. Through comparison with the diffuse reflectance computed using the numerical solution of the radiative transport equation, we show that this diffuse reflectance model gives results that are accurate for small source–-detector separation distances.

© 2012 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(030.5620) Coherence and statistical optics : Radiative transfer
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.1990) Scattering : Diffusion

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: October 25, 2011
Manuscript Accepted: November 10, 2011
Published: February 9, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Shelley B. Rohde and Arnold D. Kim, "Modeling the diffuse reflectance due to a narrow beam incident on a turbid medium," J. Opt. Soc. Am. A 29, 231-238 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  2. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, 1997).
  3. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Tenbosch, “Scattering and absorption of turbid materials determined from reflection measurements 1. Theory,” Appl. Opt. 22, 2456–2462 (1983). [CrossRef]
  4. T. J. Farrell, M. S. Patterson, and B. C. Wilson, “A diffusion theory model of spatially-resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef]
  5. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996). [CrossRef]
  6. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997). [CrossRef]
  7. A. Kienle and M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source,” Phys. Med. Biol. 42, 1801–1819 (1997). [CrossRef]
  8. V. Venugopalan, J. S. You, and B. J. Tromberg, “Radiative transport in the diffusion approximation: an extension for highly absorbing media and small source-detector separations,” Phys. Rev. E 58, 2395–2407 (1998). [CrossRef]
  9. J. S. You, C. K. Hayakawa, and V. Venugopalan, “Frequency domain photon migration in the δ-P1 approximation: analysis of ballistic, transport and diffuse regimes,” Phys. Rev. E 72, 021903 (2005). [CrossRef]
  10. I. Seo, C. K. Hayakawa, and V. Venugopalan, “Radiative transport in the delta-P1 approximation for semi-infinite turbid media,” Med. Phys. 35, 681–693 (2008). [CrossRef]
  11. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003). [CrossRef]
  12. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  13. A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance,” J. Biomed. Opt. 7, 388–397 (2002). [CrossRef]
  14. A. D. Kim, “Correcting the diffusion approximation at the boundary,” J. Opt. Soc. Am. A 28, 1007–1015 (2011). [CrossRef]
  15. A. D. Kim and M. Moscoso, “Beam propagation in sharply peaked forward scattering media,” J. Opt. Soc. Am. A 21, 797–803 (2004). [CrossRef]
  16. A. E. Siegman, “Quasi fast Hankel transform,” Opt. Lett. 1, 13–15 (1977). [CrossRef]
  17. A. D. Kim and M. Moscoso, “Radiative transfer computations for optical beams,” J. Comput. Phys. 185, 50–60 (2003). [CrossRef]
  18. P. González-Rodríguez and A. D. Kim, “Light propagation in tissues with forward-peaked and large-angle scattering,” Appl. Opt. 47, 2599–2609 (2008). [CrossRef]
  19. M. Martinelli, A. Gardner, D. Cuccia, C. Hayakawa, J. Spanier, and V. Venugopalan, “Analysis of single Monte Carlo methods for prediction of reflectance from turbid media,” Opt. Express 19, 19627–19642 (2011). [CrossRef]
  20. S. A. Prahl, “The diffusion approximation in three dimensions,” Chap. 7 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, 1995), pp. 207–231.
  21. A. D. Kim and J. B. Keller, “Light propagation in biological tissue,” J. Opt. Soc. Am. A 20, 92–98 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited