OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 344–351

Super-resolved spatial light interference microscopy

Kaiqin Chu, Zachary J. Smith, Sebastian Wachsmann-Hogiu, and Stephen Lane  »View Author Affiliations

JOSA A, Vol. 29, Issue 3, pp. 344-351 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1947 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a scheme to achieve resolution beyond the diffraction limit in spatial light interference microscopy (SLIM). By adding a grating to the optical path, the structured illumination technique can be used to improve the resolution by a factor of 2. We show that a direct application of the structured illumination technique, however, has proved to be unsuccessful. Through two crucial modifications, namely, one to the pupil plane of the objective and the other to the demodulation procedure, faithful phase information of the object is recovered and the resolution is improved by a factor of 2.

© 2012 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.4980) Imaging systems : Partial coherence in imaging
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(180.3170) Microscopy : Interference microscopy
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
Imaging Systems

Original Manuscript: November 10, 2011
Manuscript Accepted: November 14, 2011
Published: February 22, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Kaiqin Chu, Zachary J. Smith, Sebastian Wachsmann-Hogiu, and Stephen Lane, "Super-resolved spatial light interference microscopy," J. Opt. Soc. Am. A 29, 344-351 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1955). [CrossRef]
  2. R. Liang, J. K. Erwin, and M. Mansuripur, “Variation on Zernike’s phase-contrast microscope,” Appl. Opt. 39, 2152–2158 (2000).
  3. C. J. Schwarz, Y. Kuznetsova, and S. Brueck, “Imaging interferometric microscopy,” Opt. Lett. 28, 1424–1426 (2003). [CrossRef]
  4. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 1–50 (2010). [CrossRef]
  5. G. Popesu, L. P. Deflores, and J. C. Vaughan, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503–2505 (2004). [CrossRef]
  6. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005). [CrossRef]
  7. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006). [CrossRef]
  8. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011). [CrossRef]
  9. H. Ding and G. Popescu, “Instantaneous spatial light interference microscopy,” Opt. Express 18, 1569–1575 (2010). [CrossRef]
  10. H. Ding, Z. Wang, X. Liang, S. A. Boppart, K. Tangella, and G. Popescu, “Measuring the scattering parameters of tissues from quantitative phase imaging of thin slices,” Opt. Lett. 36, 2281–2283 (2011). [CrossRef]
  11. Z. Wang, L. Millet, V. Chan, H. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt. 16, 026019 (2011).
  12. B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Ann. Rev. Biochem. 78, 993–1016 (2009). [CrossRef]
  13. G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Ann. Rev. Phys. Chem. 61, 345–367 (2010). [CrossRef]
  14. S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153–1158 (2007). [CrossRef]
  15. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000). [CrossRef]
  16. H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. A 217, 408–432 (1953).
  17. C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” J. Mod. Opt. 24, 1051–1073 (1977).
  18. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999), pp. 554–618.
  19. P. Mondal, “Phase contrast microscopy in partially coherent light,” Opt. Acta 15, 65–82 (1968). [CrossRef]
  20. L. Rayleigh, “On the accuracy of focus necessary for sensibly perfect definition,” in Scientific Papers, Vol. 1 (Cambridge University, 1899), pp. 430–432.
  21. J. Haldar, Z. Wang, G. Popescu, and Z.-P. Liang, “Label-free high-resolution imaging of live cells with deconvolved spatial light interference microscopy,” in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE (2010), pp. 3382–3385.
  22. S. A. Shroff, J. R. Fienup, and D. R. Williams, “OTF compensation in structured illumination superresolution images” (Invited Paper), Proc. SPIE 7094, 709402 (2008).
  23. P. Hariharan, Basics of Interferometry, 2nd ed. (Academic, 2007), pp. 49–56.
  24. D. Brandner and G. Withers, http://cellimagelibrary.org/images/8735 .
  25. L. P. Yaroslavsky and H. J. Caulfield, “Deconvolution of multiple images of the same object,” Appl. Opt. 33, 2157–2162(1994). [CrossRef]
  26. S. D. Babacan, Z. Wang, M. Do, and G. Popescu, “Cell imaging beyond the diffraction limit using sparse deconvolution spatial light interference microscopy,” Biomed. Opt. Express 2, 1815–1827 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited