Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Modal formulation for diffraction by absorbing photonic crystal slabs

Not Accessible

Your library or personal account may give you access

Abstract

A finite element-based modal formulation of diffraction of a plane wave by an absorbing photonic crystal slab of arbitrary geometry is developed for photovoltaic applications. The semianalytic approach allows efficient and accurate calculation of the absorption of an array with a complex unit cell. This approach gives direct physical insight into the absorption mechanism in such structures, which can be used to enhance the absorption. The verification and validation of this approach is applied to a silicon nanowire array, and the efficiency and accuracy of the method is demonstrated. The method is ideally suited to studying the manner in which spectral properties (e.g., absorption) vary with the thickness of the array, and we demonstrate this with efficient calculations that can identify an optimal geometry.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Complex Bloch-modes calculation of plasmonic crystal slabs by means of finite elements method

Giuseppe Parisi, Pierfrancesco Zilio, and Filippo Romanato
Opt. Express 20(15) 16690-16703 (2012)

Semi-analytic impedance modeling of three-dimensional photonic and metamaterial structures

Kokou B. Dossou, Lindsay C. Botten, and Christopher G. Poulton
J. Opt. Soc. Am. A 30(10) 2034-2047 (2013)

Coupled-mode formulation of two-parallel photonic-crystal waveguides

Kiyotoshi Yasumoto, Vakhtang Jandieri, and Yunfei Liu
J. Opt. Soc. Am. A 30(1) 96-101 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (146)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved