OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1224–1236

Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study

Jan Trojek, Lukáš Chvátal, and Pavel Zemánek  »View Author Affiliations

JOSA A, Vol. 29, Issue 7, pp. 1224-1236 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (829 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Within the Rayleigh approximation, we investigate the behavior of an individual ellipsoidal metal nanorod that is optically confined in three dimensions using a single focused laser beam. We focus on the description of the optical torque and optical force acting upon the nanorod placed into a linearly polarized Gaussian beam (scalar description of the electric field) or a strongly focused beam (vector field description). The study comprises the influence of the trapping laser wavelength, the angular aperture of focusing optics, the orientation of the ellipsoidal nanorod, and the aspect ratio of its principal axes. The results reveal a significantly different behavior of the nanorod if the trapping wavelength is longer or shorter than the wavelength corresponding to the longitudinal plasmon resonance mode. Published experimental observations are compared with our theoretical predictions with satisfactory results.

© 2012 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 6, 2011
Revised Manuscript: February 19, 2012
Manuscript Accepted: March 9, 2012
Published: June 6, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Jan Trojek, Lukáš Chvátal, and Pavel Zemánek, "Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study," J. Opt. Soc. Am. A 29, 1224-1236 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004). [CrossRef]
  2. A. Jonáš and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electophoresis 29, 4813–4851 (2008).
  3. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008). [CrossRef]
  4. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994). [CrossRef]
  5. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2, 021875(2008). [CrossRef]
  6. J. R. Arias-González and M. Nieto-Vesperinas, “Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions,” J. Opt. Soc. Am. A 20, 1201–1209 (2003). [CrossRef]
  7. J. Pérez-Juste, I. Pastoriza-Santos, L. Liz-Marzán, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005). [CrossRef]
  8. L. Tong, V. Miljkovic`, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268–273 (2010). [CrossRef]
  9. P. H. Jones, F. Palmisano, F. Bonaccorso, P. G. Gucciardi, G. Calogero, A. C. Ferrari, and O. M. Maragò, “Rotation detection in light-driven nanorotors,” ACS Nano 3, 3077–3084 (2009). [CrossRef]
  10. W. Shelton, K. Bonin, and T. Walker, “Nonlinear motion of optically torqued nanorods,” Phys. Rev. E 71, 036204 (2005). [CrossRef]
  11. C. Sönnichsen and A. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005). [CrossRef]
  12. D. Higgins and B. Luther, “Watching molecules reorient in liquid crystal droplets with multiphoton-excited fluorescence microscopy,” J. Chem. Phys. 119, 3935–3942 (2003). [CrossRef]
  13. R. Yasuda, H. Noji, M. Yoshida, K. Kinosita, and H. Itoh, “Resolution of distinct rotational substeps by submillisecond kinetic analysis of F-1-ATPase,” Nature 410, 898–904 (2001). [CrossRef]
  14. Z. Bryant, M. Stone, J. Gore, S. Smith, N. Cozzarelli, and C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature 424, 338–341 (2003). [CrossRef]
  15. B. Chithrani, A. Ghazani, and W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6, 662–668 (2006). [CrossRef]
  16. R. Fan, R. Karnik, M. Yue, D. Li, A. Majumdar, and P. Yang, “DNA translocation in inorganic nanotubes,” Nano Lett. 5, 1633–1637 (2005). [CrossRef]
  17. J. Plewa, E. Tanner, D. Mueth, and D. Grier, “Processing carbon nanotubes with holographic optical tweezers,” Opt. Express 12, 1978–1981 (2004). [CrossRef]
  18. K. Bonin, B. Kourmanov, and T. Walker, “Light torque nanocontrol, nanomotors and nanorockers,” Opt. Express 10, 984–989 (2002).
  19. L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97, 058301 (2006). [CrossRef]
  20. F. C. Cheong and D. G. Grier, “Rotational and translational diffusion of copper oxide nanorods measured with holographic video microscopy,” Opt. Express 18, 6555–6562 (2010). [CrossRef]
  21. P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107, 037401 (2011). [CrossRef]
  22. M. Pelton, M. Liu, H. Kim, G. Smith, P. Guyot-Sionnest, and N. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31, 2075–2077 (2006). [CrossRef]
  23. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8, 2998–3003 (2008). [CrossRef]
  24. E. Wolf, “Electromagnetic diffraction in optical systems. 1. An integral representation of the image field,” Proc. R. Soc. A 253, 349–357 (1959). [CrossRef]
  25. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959). [CrossRef]
  26. J. J. Stamnes, Waves in Focal regions (IOP Publishing, 1986).
  27. J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989). [CrossRef]
  28. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: An integral representation,” J. Opt. Soc. Am. A 12, 325–332 (1995). [CrossRef]
  29. A. E. Siegman, Lasers (Univiversity Science Books, 1986).
  30. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989). [CrossRef]
  31. T. Nieminen, H. Rubinsztein-Dunlop, N. Heckenberg, and A. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468–471 (2001). [CrossRef]
  32. F. Borghese, P. Denti, R. Saija, and M. A. Iatì, “Optical trapping of nonspherical particles in the T-matrix formalism,” Opt. Express 15, 11984–11998 (2007). [CrossRef]
  33. A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18, 822–830 (2010). [CrossRef]
  34. S. H. Simpson, D. C. Benito, and S. Hanna, “Polarization-induced torque in optical traps,” Phys. Rev. A 76, 043408 (2007). [CrossRef]
  35. F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100, 163903 (2008). [CrossRef]
  36. P. C. Chaumet and C. Billaudeau, “Coupled dipole method to compute optical torque: application to a micropropeller,” J. Appl. Phys. 101, 023106 (2007). [CrossRef]
  37. C. Rockstuhl and H. Herzig, “Rigorous diffraction theory applied to the analysis of the optical force on elliptical nano- and micro-cylinders,” J. Opt. A 6, 921–931 (2004). [CrossRef]
  38. C. Rockstuhl and H. Herzig, “Calculation of the torque on dielectric elliptical cylinders,” J. Opt. Soc. Am. A 22, 109–116 (2005). [CrossRef]
  39. P. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000). [CrossRef]
  40. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  41. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  42. D. Wang, S. Guo, H. Ren, and S. Yin, “Optical characteristics of silver-doped polarizing glass,” Opt. Lett. 27, 992–994 (2002). [CrossRef]
  43. F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: analytical solution,” Phys. Rev. A 78, 013843 (2008). [CrossRef]
  44. E. Palik and G. Ghosh, Handbook of Optical Constants of Solids, Vol. 3, in Handbook of Optical Constants of Solids (Academic Press, 1998).
  45. C. W. Gardiner, Handbook of Stochastic Methods (Springer-Verlag, 2004).
  46. H. A. Kramers, “Brownian motion in the field of force and the diffusion model of chemical reactions,” Physica (Amsterdam) 7, 284–304 (1940). [CrossRef]
  47. S. H. Simpson and S. Hanna, “First-order nonconservative motion of optically trapped nonspherical particles,” Phys. Rev. E 82, 031141 (2010). [CrossRef]
  48. Y. Seol, A. E. Carpenter, and T. T. Perkins, “Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating,” Opt. Lett. 31, 2429–2431 (2006). [CrossRef]
  49. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010). [CrossRef]
  50. S. Merabia, P. Keblinski, L. Joly, L. J. Lewis, and J.-L. Barrat, “Critical heat flux around strongly heated nanoparticles,” Phys. Rev. E 79, 021404 (2009). [CrossRef]
  51. O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D 41, 185501 (2008). [CrossRef]
  52. S. N. S. Reihani and L. B. Oddershede, “Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations,” Opt. Lett. 32, 1998–2000 (2007). [CrossRef]
  53. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996). [CrossRef]
  54. M. J. Nasse and J. Woehl, “Realistic modeling of the illumination point spread function in confocal scanning optical microscopy,” J. Opt. Soc. Am. A 27, 295–302 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited