Generation of

JOSA A, Vol. 29, Issue 7, pp. 12521258 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001252
Enhanced HTML Acrobat PDF (753 KB)
Abstract
In this paper, we present the theoretical studies of a refractive index map to implement a Gauss to a
© 2012 Optical Society of America
OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(260.1960) Physical optics : Diffraction theory
(290.3200) Scattering : Inverse scattering
ToC Category:
Physical Optics
History
Original Manuscript: January 17, 2012
Revised Manuscript: March 13, 2012
Manuscript Accepted: March 14, 2012
Published: June 6, 2012
Citation
Damian P. SanRomanAlerigi, Tien K. Ng, Yaping Zhang, Ahmed Ben Slimane, Mohammad Alsunaidi, and Boon S. Ooi, "Generation of J_{0}BesselGauss beam by a heterogeneous refractive index map," J. Opt. Soc. Am. A 29, 12521258 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa2971252
Sort: Year  Journal  Reset
References
 J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
 W. Cong, N. Chen, and B. Gu, “Generation of nondiffracting beams by diffractive phase elements,” J. Opt. Soc. Am. 15, 2362–2364 (1998). [CrossRef]
 S. ChavezCerda, “A new approach to Bessel beams,” J. Mod. Opt. 46, 923–930 (1999).
 F. Gori, G. Guattari, and C. Padovani, “BesselGauss beams,” Opt. Commun. 64, 491–495 (1987). [CrossRef]
 Y. Lin, W. Seka, J. H. Eberly, H. Huang, and D. L. Brown, “Experimental investigation of Bessel beam characteristics,” Appl. Opt. 31, 2708–2713 (1992). [CrossRef]
 R. M. Herman and T. A. Wiggins, “Propagation and focusing of BesselGauss, generalized BesselGauss and modified BesselGauss beams,” J. Opt. Soc. Am. A 18, 170–176 (2001). [CrossRef]
 I. A. Litvin, M. G. McLaren, and A. Forbes, “Propagation of obstructed Bessel and BesselGauss beams,” Proc. SPIE 7062, 706218 (2008). [CrossRef]
 J. Durnin, J. Miceli, and J. H. Eberly, “Diffractionfree beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef]
 F. Wu, Y. Chen, and D. Guo, “Nanosecond pulsed BesselGauss beam generated directly from Nd:YAG axiconbased resonator,” Appl. Opt. 46, 4943–4947 (2007). [CrossRef]
 V. Arrizón, D. SánchezdelaLlave, U. Ruiz, and G. Méndez, “Efficient generation of an arbitrary nondiffracting Bessel beam employing its phase modulation,” Opt. Lett. 34, 1456–1458 (2009). [CrossRef]
 M. M. Méndez Otero, G. C. Martínez Jimnez, M. L. Arroyo Carrasco, M. D. Iturbe Castillo, and E. A. Mart Panameño, “Generation of BesselGauss beams by means of computed generated holograms for Bessel Beams,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2006), paper JWD129.
 Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by radially polrized beam,” Opt. Lett. 31, 1726–1728 (2006). [CrossRef]
 J. Canning, “Diffractionfree mode generation and propagation in optical waveguides,” Opt. Commun. 207, 35–39 (2002). [CrossRef]
 V. S. Ilchenko, M. Mohageg, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Efficient generation of truncated Bessel beams using cylindrical waveguides,” Opt. Express 15, 5866–5871 (2007). [CrossRef]
 T. Tsai, E. McLeod, and C. B. Arnold, “Generating Bessel beams with a tunable acoustic gradient index of refraction lens,” Proc. SPIE 6326, 63261F (2006). [CrossRef]
 F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with selfreconstructing beams,” Nat. Photon. 4, 780–785 (2010). [CrossRef]
 M. Lei and B. Yao, “Characteristics of beam profiles of Gaussian beam passing through an axicon,” Opt. Commun. 239, 367–372 (2004). [CrossRef]
 K. Hayata, “Are Bessel beams supportable in gradedindex media?” Opt. Rev. 3, 299–300 (1996). [CrossRef]
 B. Gang and L. Peijun, “Inverse medium scattering problems for electromagnetic waves,” SIAM J. Appl. Math. 65, 2049–2066 (2005). [CrossRef]
 A. J. Devaney, “A filtered backprojection algorithm for diffraction tomography,” Ultrason. Imag. 4, 336–350 (1982). [CrossRef]
 R. M. Lewis, “Physical optics inverse diffraction,” IEEE Trans. Antennas Propag. 17, 308–314 (1969). [CrossRef]
 Y. Lai, J. Ng, H. Yang, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chang, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009). [CrossRef]
 M. Piana, “On uniqueness for anisotropic inhomogeneous inverse scattering problems,” Inverse Probl. 14, 1565–1579 (1998). [CrossRef]
 O. Dorn, H. BerteteAguirre, J. G. Berryman, and G. C. Papanicolaou, “A nonlinear inversion method for 3D electromagnetic imaging using adjoint fields,” Inverse Probl. 15, 1523–1558 (1999). [CrossRef]
 A. J. Devaney, “A computer simulation study of diffraction tomography,” IEEE Trans. Biomed. Eng. BME30, 377–386 (1983). [CrossRef]
 H. Hadar and P. Monk, “The linear sampling method for solving the electromagnetic inverse medium problem,” Inverse Probl. 18, 891–906 (2002). [CrossRef]
 H. Hadar, “The interior transmission problem for anisotropic Maxwell’s equations and its applications to the inverse problem,” Math. Methods Appl. Sci. 27, 2111–2129 (2004). [CrossRef]
 F. Cakoni, “A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media,” Inverse Probl. Imaging 1, 443–456 (2007).
 J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
 U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2008). [CrossRef]
 H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010). [CrossRef]
 H. J. Lee, C. H. Henry, K. J. Orlowsky, R. F. Kazarinov, and T. Y. Kometani, “Refractiveindex dispersion of phosphosilicate glass, thermal oxide, and silicon nitride films on silicon,” Appl. Opt. 27, 4104–4109 (1988). [CrossRef]
 W. Fenga, W. K. Choia, L. K. Beraa, M. Jib, and C. Y. Yangb, “Optical characterization of asprepared and rapid thermal oxidized partially strain compensated Si1xyGexCy films,” Mater. Sci. Semicond. Process. 4, 655–659 (2001). [CrossRef]
 A. Zakery, “Optical properties and applications of chalcogenide glasses: a review,” J. NonCryst. Solids 330, 1–12 (2003). [CrossRef]
 S. B. Kang, “Optical and dielectric properties of chalcogenide glasses at terahertz frequencies,” ETRI J. 31, 667–674(2009). [CrossRef]
Cited By 
Alert me when this paper is cited 
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's CitedBy Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article  Next Article »
OSA is a member of CrossRef.