OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1377–1382

Goos–Hanchen and Imbert–Fedorov shifts for Hermite–Gauss beams

Chandra Prajapati and D. Ranganathan  »View Author Affiliations


JOSA A, Vol. 29, Issue 7, pp. 1377-1382 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001377


View Full Text Article

Enhanced HTML    Acrobat PDF (271 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the lateral Goos–Hanchen and the transverse Imbert–Fedorov shift produced during the reflection of Hermite–Gauss beams Hm0 or H0m at a plane interface. The vector angular spectrum method for a light beam in terms of a two-form angular spectrum consisting of the two orthogonal polarized components was used. We have carried out a detailed numerical calculation of these shifts at different angles of incidence, over the whole range of incidence without making the usual approximations. The shift variation as a function of refractive index and order of the Hermite–Gauss beam is studied. We also compare the shift variations with the orientation of the lobes of the Hermite–Gauss beam. We observed that the shifts are nearly equal for the two cases Hm0 (lobe oriented in the plane of incidence) and H0m (lobe oriented perpendicular to plane of incidence). These are the first quantitative estimates of the shifts for Hermite–Gauss beams as per our knowledge and are relevant for all cases of slab geometry.

© 2012 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(160.4760) Materials : Optical properties
(260.6970) Physical optics : Total internal reflection

ToC Category:
Diffraction and Gratings

History
Original Manuscript: January 5, 2012
Revised Manuscript: April 18, 2012
Manuscript Accepted: May 10, 2012
Published: June 21, 2012

Citation
Chandra Prajapati and D. Ranganathan, "Goos–Hanchen and Imbert–Fedorov shifts for Hermite–Gauss beams," J. Opt. Soc. Am. A 29, 1377-1382 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-7-1377


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Goos and H. Hanchen, “Ein neuer and fundamentaler Versuch zur total Reflection,” Ann. Phys. 1, 333–346 (1947).
  2. F. I. Fedorov, “K teorii polnogo otrazheniya,” Dokl. Akad. Nauk SSSR 105, 465–468 (1955).
  3. C. Imbert, “Calculation and experimental proof of the transverse shift induced by TIR of a circularly polarized light beam,” Phys. Rev. D 5, 787–796 (1972). [CrossRef]
  4. K. Artmann, “Calculation of the lateral shift of totally reflected beams,” Ann. Phys. 2, 87–102 (1948).
  5. R. H. Renard, “Total reflection: a new evaluation of the Goos-Hanchen shift,” J. Opt. Soc. Am. 54, 1190–1197 (1964). [CrossRef]
  6. C. A. Risset and J. M. Vigoureux, “An elementary presentation of the Goos-Hanchen shift,” Opt. Commun. 91, 155–157 (1992). [CrossRef]
  7. M. McGuirk and C. K. Carniglia, “An angular spectrum representation approach to the Goos-Hanchen shift,” J. Opt. Soc. Am. 67, 103–107 (1977). [CrossRef]
  8. B. R. Horowitz, and T. Tamir, “Lateral displacement of a light beam at a dielectric interface,” J. Opt. Soc. Am. 61, 586–594 (1971). [CrossRef]
  9. H. K. V. Lotsch, “Reflection and refraction of a beam of light at a plane interface,” J. Opt. Soc. Am. 58, 551–561 (1968). [CrossRef]
  10. C. C. Chan and T. Tamir, “Beam phenomena at and near critical incidence upon a dielectric interface,” J. Opt. Soc. Am. A 4, 655–663 (1987). [CrossRef]
  11. T. Tamir and H. L. Bertoni, “Lateral displacement of optical beams at multilayered and periodic structures,” J. Opt. Soc. Am. 61, 1397–1413 (1971). [CrossRef]
  12. J. J. Cowan and B. Anicin, “Longitudinal and transverse displacements of a bounded microwave beam at total internal reflection,” J. Opt. Soc. Am. 67, 1307–1314 (1977). [CrossRef]
  13. F. Pillon, H. Gilles, and S. Girard, “Experimental observation of the Imbert-Fedorov transverse displacement after a single total reflection,” Appl. Opt. 43, 1863–1869 (2004). [CrossRef]
  14. R. Briers, O. Leroy, and G. Shkerdin, “Bounded beam interaction with thin inclusions. characterization by phase differences at Rayleigh angle incidence,” J. Acoust. Soc. Am. 108, 1622–1630 (2000). [CrossRef]
  15. B. M. Jost, Abdul-Azeez R. Al-Rashed, and B. E. A. Saleh, “Observation of the Goos-Hänchen effect in a phase-conjugate mirror,” Phys. Rev. Lett. 81, 2233–2235 (1998). [CrossRef]
  16. V. K. Ignatovich, “Neueron reflection from condensed matter, the Goos-Hanchen effect and coherence,” Phys. Lett. A 322, 36–46 (2004). [CrossRef]
  17. J. Jose, F. B. Segerink, J. P. Korterik, and H. L. Offerhaus, “Near-field observation of spatial phase shifts associated with Goos-Hanchen and surface plasmon resonance effects,” Opt. Express 16, 1958–1964 (2008). [CrossRef]
  18. X. Yin, and L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89, 261108 (2006). [CrossRef]
  19. H. Schomerus and M. Hentschel, “Correcting ray optics at curved dielectric microresonator interfaces: phase-space unification of Fresnel filtering and the Goos-Hänchen shift,” Phys. Rev. Lett. 96, 243903 (2006). [CrossRef]
  20. C. W. J. Beenakker, R. A. Sepkhanov, A. R. Akhmerov, and J. Tworzydlo, “Quantum Goos-Hänchen effect in graphene,” Phys. Rev. Lett. 102, 146804 (2009). [CrossRef]
  21. M. Onoda, S. Murakami, and N. Nagosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004). [CrossRef]
  22. K. Yu Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006). [CrossRef]
  23. O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008). [CrossRef]
  24. C.-F. Li, “Unified theory for Goos-Hanchen and Imbert-Fedorov effects,” Phys. Rev. A 76, 013811 (2007). [CrossRef]
  25. A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos-Hanchen and Imbert-Fedorov shifts,” Opt. Lett. 33, 1437–1439 (2008). [CrossRef]
  26. A. Aiello and J. P. Woerdman, “The reflection of a Maxwell-Gaussian beam by planar interface,” arXiv:0710.1643v2 (2007).
  27. D. Golla and S. D. Gupta, “Goos-Hanchen shift for higher order Hermite-Gauss beams,” Pramana J. Phys. 76, 603–612 (2011). [CrossRef]
  28. H. M. Lai, F. C. Cheng, and W. K. Tang, “Goos-Hanchen effect around and off the critical angle,” J. Opt. Soc. Am. A 3, 550–557 (1986). [CrossRef]
  29. O. Costa de Beauregard, “Translational inertial spin effect with photons,” Phys. Rev. 139, B1443–B1446 (1965). [CrossRef]
  30. M. Born and E. Wolf, Principles of Optics (Pergamon, 1987), p. 47.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited