Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Goos–Hänchen shift of the reflected wave through an anisotropic metamaterial containing metal/dielectric nanocomposites

Not Accessible

Your library or personal account may give you access

Abstract

Goos–Hänchen (GH) shift of a transverse-magnetic (TM) wave reflected from a semi-infinite anisotropic metamaterial consisting of aligned metallic nanowires in a dielectric matrix is investigated. Based on Bruggeman effective medium theory, we obtain the conditions for realizing the negative refraction, which are dependent on both the incident wavelength and the volume fraction of metallic inclusions. Then, we investigate the GH shifts from the composite metamaterial with positive and negative refractions with the stationary-phase method. Numerical results show that the enhancement of GH shift can be achieved near the pseudo-Brewster angle for small volume fractions and at the close-to-grazing incidence for large volume fractions. We further find that for positively refractive metamaterials with weak absorption, one can realize the transition from negative GH shift to the positive one by adjusting the incident wavelength. However, for negatively refractive composite metamaterials, the reversal of the GH shifts may take place by the adjustment of the volume fraction instead of the incident wavelength. In order to demonstrate the validity of the stationary-phase approach, numerical simulations are performed for a Gaussian-shaped beam. In the end, by using COMSOL simulation, a comprehensive understanding is given and the above analysis is confirmed.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites

Bin Zhao and Lei Gao
Opt. Express 17(24) 21433-21441 (2009)

Tunable lateral shifts of the reflected wave on the surface of an anisotropic chiral metamaterial

Yanyan Huang, Zhongwei Yu, Chonggui Zhong, Jinghuai Fang, and Zhengchao Dong
Opt. Mater. Express 7(5) 1473-1485 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved