OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1436–1444

Goos–Hänchen shift of the reflected wave through an anisotropic metamaterial containing metal/dielectric nanocomposites

Yanyan Huang, Bin Zhao, and Lei Gao  »View Author Affiliations


JOSA A, Vol. 29, Issue 7, pp. 1436-1444 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001436


View Full Text Article

Enhanced HTML    Acrobat PDF (899 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Goos–Hänchen (GH) shift of a transverse-magnetic (TM) wave reflected from a semi-infinite anisotropic metamaterial consisting of aligned metallic nanowires in a dielectric matrix is investigated. Based on Bruggeman effective medium theory, we obtain the conditions for realizing the negative refraction, which are dependent on both the incident wavelength and the volume fraction of metallic inclusions. Then, we investigate the GH shifts from the composite metamaterial with positive and negative refractions with the stationary-phase method. Numerical results show that the enhancement of GH shift can be achieved near the pseudo-Brewster angle for small volume fractions and at the close-to-grazing incidence for large volume fractions. We further find that for positively refractive metamaterials with weak absorption, one can realize the transition from negative GH shift to the positive one by adjusting the incident wavelength. However, for negatively refractive composite metamaterials, the reversal of the GH shifts may take place by the adjustment of the volume fraction instead of the incident wavelength. In order to demonstrate the validity of the stationary-phase approach, numerical simulations are performed for a Gaussian-shaped beam. In the end, by using COMSOL simulation, a comprehensive understanding is given and the above analysis is confirmed.

© 2012 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(260.2110) Physical optics : Electromagnetic optics
(260.2065) Physical optics : Effective medium theory

ToC Category:
Materials

History
Original Manuscript: March 9, 2012
Revised Manuscript: May 14, 2012
Manuscript Accepted: May 30, 2012
Published: June 28, 2012

Citation
Yanyan Huang, Bin Zhao, and Lei Gao, "Goos–Hänchen shift of the reflected wave through an anisotropic metamaterial containing metal/dielectric nanocomposites," J. Opt. Soc. Am. A 29, 1436-1444 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-7-1436


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 436, 333–346 (1947). [CrossRef]
  2. F. Goos and H. Hänchen, “Neumessung des Strahlversetzungseffektes bei Totalreflexion,” Ann. Phys. 440, 251–252 (1949). [CrossRef]
  3. K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Phys. 437, 87–102 (1948). [CrossRef]
  4. T. Tamir and H. L. Bertoni, “Lateral displacement of optical Beams at multilayered and periodic structures,” J. Opt. Soc. Am. 61, 1397–1413 (1971). [CrossRef]
  5. M. Miri, A. Naqavi, A. Khavasi, K. Mehrany, S. Khorasani, and B. Rashidian, “Geometrical approach in physical understanding of the Goos–Hänchen shift in one- and two-dimensional periodic structures,” Opt. Lett. 33, 2940–2942 (2008). [CrossRef]
  6. L. G. Wang and S. Y. Zhu, “Giant lateral shift of a light beam at the defect mode in one-dimensional photonic crystals,” Opt. Lett. 31, 101–103 (2006). [CrossRef]
  7. P. Hou, Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, “Giant bistable shifts for one-dimensional nonlinear photonic crystals,” Phys. Rev. A 75, 045802 (2007). [CrossRef]
  8. F. Lima, T. Dumelow, E. L. Albuquerque, and J. A. P. da Costa, “Power flow associated with the Goos–Hänchen shift of a normally incident electromagnetic beam reflected off an antiferromagnet,” Phys. Rev. B 79, 155124 (2009). [CrossRef]
  9. H. M. Lai, S. W. Chan, and W. H. Wong, “Nonspecular effects on reflection from absorbing media at and around Brewster’s dip,” J. Opt. Soc. Am. A 23, 3208–3216 (2006). [CrossRef]
  10. J. B. Götte, A. Aiello, and J. P. Woerdman, “Loss-induced transition of the Goos–Hänchen effect for metals and dielectrics,” Opt. Express 16, 3961–3969 (2008). [CrossRef]
  11. B. Zhao and L. Gao, “Temperature-dependent Goos–Hänchen shift on the interface of metal/dielectric composites,” Opt. Express 17, 21433–21441 (2009). [CrossRef]
  12. P. R. Berman, “Goos–Hänchen shift in negatively refractive media,” Phys. Rev. E 66, 0676031 (2002).
  13. J. A. Kong, B. I. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80, 2084–2086 (2002). [CrossRef]
  14. A. Lakhtakia, “On planewave remittances and Goos–Hänchen shifts of planar slabs with negative real permittivity and permeability,” Electromagnetics 23, 71–75 (2003). [CrossRef]
  15. N. H. Shen, J. Chen, Q. Y. Wu, T. Lan, Y. X. Fan, and H. T. Wang, “Large lateral shift near pseudo-Brewster angle on reflection from a weakly absorbing double negative medium,” Opt. Express 14, 10574–10579 (2006). [CrossRef]
  16. D. R. Smith and D. Schuring, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003). [CrossRef]
  17. C. W. Qiu, L. W. Li, and T. S. Yeo, “Scattering by rotationally symmetric anisotropic spheres: potential formulation and parametric studies,” Phys. Rev. E 75, 026609 (2007). [CrossRef]
  18. H. X. Da, C. Xu, Z. Y. Li, and G. Kraftmakher, “Beam shifting of an anisotropic negative refractive medium,” Phys. Rev. E 71, 066612 (2005). [CrossRef]
  19. F. M. Kong, B. I. Wu, H. Huang, J. T. Huangfu, S. Xi, and J. A. Kong, “Lateral displacement of an electromagnetic beam reflected from a grounded indefinite uniaxial slab,” Prog. Electromagn. Res. 82, 351–366 (2008). [CrossRef]
  20. Y. Wang, K. Yu, X. Zha, J. Xu, and J. Yan, “Reflection and transmission of Gaussian beam from a uniaxial crystal slab,” Europhys. Lett. 75, 569–575 (2006). [CrossRef]
  21. Z. P. Wang, C. Wang, and Z. H. Zhang, “Goos–Hänchen shift of the uniaxially anisotropic left-handed material film with an arbitrary angle between the optical axis and the interface,” Opt. Commun. 281, 3019–3024 (2008). [CrossRef]
  22. Q. Cheng and T. J. Cui, “Lateral shifts of optical beams on the interface of anisotropic metamaterial,” J. Appl. Phys. 99, 066114 (2006). [CrossRef]
  23. Y. Xiang, X. Dai, and S. Wen, “Negative and positive Goos–Hänchen shifts of a light beam transmitted from an indefinite medium slab,” Appl. Phys. A 87, 285–290 (2007). [CrossRef]
  24. M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50, 81–85 (2008). [CrossRef]
  25. W. T. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77, 233101 (2008). [CrossRef]
  26. L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, and S. Sridhar, “Negative index metamaterials based on metal-dielectric nanocomposites for imaging applications,” Appl. Phys. Lett. 93, 123117 (2008). [CrossRef]
  27. L. H. Shi and L. Gao, “Subwavelength imaging from a multilayered structure containing interleaved nonspherical metal-dielectric composites,” Phys. Rev. B 77, 195121 (2008). [CrossRef]
  28. J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008). [CrossRef]
  29. A. L. Pokrovsky and A. L. Efros, “Nonlocal electrodynamics of two-dimensional wire mesh photonic crystals,” Phys. Rev. B 65, 045110 (2002). [CrossRef]
  30. M. G. Silveirinha, “Nonlocal homogenization model for a periodic array of ε-negative rods,” Phys. Rev. E 73, 046612 (2006). [CrossRef]
  31. H. Y. Xie, P. T. Leung, and D. P. Tsai, “Molecular decay rates and emission frequencies in the vicinity of an anisotropic metamaterial,” Solid State Commun. 149, 625–629 (2009). [CrossRef]
  32. H. M. Lai and S. W. Chan, “Large and negative Goos–Hänchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett. 27, 680–682 (2002). [CrossRef]
  33. Y. Gao, J. P. Huang, Y. M. Liu, L. Gao, K. W. Yu, and X. Zhang, “Optical negative refraction in ferrofluids with magnetocontrollability,” Phys. Rev. Lett. 104, 034501 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited