OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 1659–1666

Analytical study of resonance conditions in planar resonators

Philippe Boyer and Daniel Van Labeke  »View Author Affiliations

JOSA A, Vol. 29, Issue 8, pp. 1659-1666 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (574 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a study of a generalized Airy-like formula of the transmittance through planar resonators. A complete and analytical analysis of total transmission conditions is given according to physical parameters. The homogeneous problem related to free oscillations of resonators, which leads to complex resonance frequencies and quality factors, is also resolved. After a quick validation on well-known parallel-plate dielectric layers behaving as Fabry–Perot resonators, our discussion is applied on subwavelength metallic lamellar gratings from an analytical modal theory assuming perfectly electric conductors.

© 2012 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Physical Optics

Original Manuscript: April 9, 2012
Revised Manuscript: June 13, 2012
Manuscript Accepted: June 20, 2012
Published: July 24, 2012

Philippe Boyer and Daniel Van Labeke, "Analytical study of resonance conditions in planar resonators," J. Opt. Soc. Am. A 29, 1659-1666 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. J. Garcia-Vidal, L. Martin-Moreno, L. Kuipers, and T. W. Ebbesen, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  2. S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000). [CrossRef]
  3. N. Garcia and M. Nieto-Vesperinas, “Theory of electromagnetic wave transmission through metallic gratings of subwavelength slits,” J. Opt. A Pure Appl. Opt. 9, 490–495 (2007). [CrossRef]
  4. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  5. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996). [CrossRef]
  6. G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996). [CrossRef]
  7. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1019–1023(1996). [CrossRef]
  8. E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000). [CrossRef]
  9. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” J. Opt. A Pure Appl. Opt. 86, 1114–1117 (2001).
  10. D. Maystre, A. L. Fehrembach, and E. Popov, “Plasmonic antiresonance through subwavelength hole arrays,” J. Opt. Soc. Am. A 28, 342–355 (2011). [CrossRef]
  11. J. R. Andrewartha, G. H. Derrick, and R. C. McPhredran, “A general modal theory for reflection gratings,” Opt. Acta 28, 1501–1516 (1981). [CrossRef]
  12. J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, and H. Ming, “Analytical investigation of transmission properties of metallic gratings,” Chin. Phys. Lett. 25, 4385–4387 (2008). [CrossRef]
  13. A. Kobyakov, A. R. Zakharian, A. Mafi, and S. A. Darmanyan, “Semi-analytical method for light interaction with 1d-periodic nanoplasmonic structures,” Opt. Express 16, 8938–8957(2008). [CrossRef]
  14. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A Pure Appl. Opt. 2, 48–51 (2000). [CrossRef]
  15. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  16. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 1–4 (2005). [CrossRef]
  17. H. Liu and P. Lalanne, “Comprehensive microscopic model of the extraordinary optical transmission,” J. Opt. Soc. Am. A 27, 2542–2550 (2010). [CrossRef]
  18. M. Guillaumee, L. A. Dunbar, and R. P. Stanley, “Description of the modes governing the optical transmission through metal gratings,” Opt. Express 19, 4740–4755 (2011). [CrossRef]
  19. A. A. Antonov, “Resonance on real and complex frequencies,” Eur. J. Sci. Res. 28, 193–204 (2009).
  20. A. A. Antonov, “New interpretation of resonance,” Int. J. Pure Appl. Sci. Technol. 2, 1–12 (2010).
  21. P. Boyer, G. Renversez, E. Popov, and M. Nevière, “Improved differential method for microstructured optical fibres,” J. Opt. A Pure Appl. Opt. 9, 728–740 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited