OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 1 — Jan. 1, 2013
  • pp: 149–153

Broadband Faraday isolator

Michał Berent, Andon A. Rangelov, and Nikolay V. Vitanov  »View Author Affiliations


JOSA A, Vol. 30, Issue 1, pp. 149-153 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000149


View Full Text Article

Enhanced HTML    Acrobat PDF (315 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Driving on an analogy with the technique of composite pulses in quantum physics, we theoretically propose a broadband Faraday rotator and thus a broadband optical isolator, which is composed of sequences of ordinary Faraday rotators and achromatic quarter-wave plates rotated at the predetermined angles.

© 2013 Optical Society of America

OCIS Codes
(230.2240) Optical devices : Faraday effect
(230.3240) Optical devices : Isolators

ToC Category:
Optical Devices

History
Original Manuscript: August 8, 2012
Revised Manuscript: December 6, 2012
Manuscript Accepted: December 7, 2012
Published: January 1, 2013

Citation
Michał Berent, Andon A. Rangelov, and Nikolay V. Vitanov, "Broadband Faraday isolator," J. Opt. Soc. Am. A 30, 149-153 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-1-149


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Lord Rayleigh, “On the constant of magnetic rotation of light in bisulphide of carbon,” Phil. Trans. R. Soc. London 176, 343–366 (1885). [CrossRef]
  2. L. A. Ferreira, J. L. Santos, and F. Farahi, “Polarization-induced noise in a fiber-optic Michelson interferometer with Faraday rotator mirror elements,” Appl. Opt. 34, 6399–6402 (1995). [CrossRef]
  3. J. Berguet and N. Gisin, “Interferometer using 3×3 coupler and Faraday mirrors,” Opt. Lett. 20, 1447–1449 (1995). [CrossRef]
  4. C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, “All optical switching in a highly birefringent and a standard telecom fiber using a Faraday mirror stabilization scheme,” Opt. Commun. 182, 335–341 (2000). [CrossRef]
  5. S. Saito, K. Yokoyama, and Y. Fujii, “Light circulator using Faraday effect of heavy flint glass,” Proc. IEEE 52, 979–979 (1964). [CrossRef]
  6. E. H. Turner and R. H. Stolen, “Fiber Faraday circulator,” J. Opt. Soc. Am. 69, 1483–1483 (1979).
  7. E. H. Turner and R. H. Stolen, “Fiber Faraday circulator or isolator,” Opt. Lett. 6, 322–323 (1981). [CrossRef]
  8. S. Yamashite, K. Hotate, and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator and a Faraday rotator mirror,” J. Lightwave Technol. 14, 385–390 (1996). [CrossRef]
  9. H. Iwamura, S. Hayashi, and H. Iwasaki, “A compact optical isolator using a Y3Fe5O12 crystal for near infra-red radiation,” Opt. Quantum Electron. 10, 393–398 (1978). [CrossRef]
  10. T. F. Johnston and W. Proffitt, “Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser,” IEEE J. Quantum Electron. 16, 483–488 (1980). [CrossRef]
  11. P. A. Schulz, “Wavelength independent Faraday isolator,” Appl. Opt. 28, 4458–4464 (1989). [CrossRef]
  12. P. A. Schulz, “Broadband Faraday isolator,” U.S. patent 5,052,786 (1October1991).
  13. V. A. Parfefov and V. A. Parfenov, “Broadband Faraday isolator for gravitational wave detectors” Classical Quantum Gravity 19, 1865–1870 (2002). [CrossRef]
  14. A. Ardavan, “Exploiting the Poincaré–Bloch symmetry to design high-fidelity broadband composite linear retarders,” New J. Phys. 9, 24 (2007). [CrossRef]
  15. S. S. Ivanov, A. A. Rangelov, N. V. Vitanov, T. Peters, and T. Halfmann, “Highly efficient broadband conversion of light polarization by composite retarders,” J. Opt. Soc. Am. A 29, 265–269 (2012). [CrossRef]
  16. H. Kuratsuji and S. Kakigi, “Maxwell–Schrödinger equation for polarized light and evolution of the Stokes parameters,” Phys. Rev. Lett. 80, 1888–1891 (1998). [CrossRef]
  17. H. Kuratsuji, R. Botet, and R. Seto, “Electromagnetic gyration,” Prog. Theor. Phys. 117, 195–217 (2007). [CrossRef]
  18. A. A. Rangelov, U. Gaubatz, and N. V. Vitanov, “Broadband adiabatic conversion of light polarization,” Opt. Commun. 283, 3891–3894 (2010). [CrossRef]
  19. R. Botet and H. Kuratsuji, “Light-polarization tunneling in optically active media,” J. Phys. A 41, 035301 (2008). [CrossRef]
  20. R. Botet and H. Kuratsuji, “Polarization of an electromagnetic wave in a randomly birefringent medium: a stochastic theory of the Stokes parameters,” Phys. Rev. E 81, 036602 (2010). [CrossRef]
  21. P. Hariharan and P. E. Ciddor, “Broadband optical isolator,” Opt. Laser Technol. 29, 83–84 (1997). [CrossRef]
  22. J. S. Kim and J. K. Chang, “Achromatic polarization rotator and circular polarizer consisting of two wave plates of the same material,” J. Korean Phys. Soc. 48, 51–55 (2006). [CrossRef]
  23. H. Hurvitz and R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 493–495 (1941). [CrossRef]
  24. A. B. Villaverde, D. A. Donatti, and D. G. Bozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magnetic field,” J. Phys. C 11, L495–L498 (1978). [CrossRef]
  25. X. Chen, B. Lavorel, J. P. Boquillon, R. Saint-Loup, and M. Jannin, “Optical rotary power at the resonance of the terbium F76→D54 line in terbium gallium garnet,” Solid-State Electron. 42, 1765–1766 (1998). [CrossRef]
  26. H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanigatani, Y. Nagata, and H. Kinoshita, “Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator,” Opt. Express 19, 15181–15187 (2011). [CrossRef]
  27. MolTech GmbH Faraday crystal TGG, http://www.mt-berlin.com/frames_cryst/descriptions/faraday.htm .
  28. L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, I. G. Hughes, and C. S. Adams, “An optical isolator using an atomic vapor in the hyperfine Paschen–Back regime,” Opt. Lett. 37, 3405–3407 (2012). [CrossRef]
  29. E. A. Khazanov, “Compensation of thermally induced polarisation distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999). [CrossRef]
  30. E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001). [CrossRef]
  31. E. A. Khazanov, N. F. Andreev, A. Malshakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004). [CrossRef]
  32. R. V. Kiyan, A. A. Fotiadi, and O. V. Shakin, “A bidirectional ring fiber laser with 90° Faraday rotator as the nonreciprocal phase element. II. Experiment,” Tech. Phys. Lett. 29, 450–453 (2003). [CrossRef]
  33. X. S. Yao, L. Yan, and Y. Shi, “Highly repeatable all-solid-state polarization-state generator,” Opt. Lett. 30, 1324–1326 (2005). [CrossRef]
  34. Y. Zhang, C. Yang, S. Li, H. Yan, J. Yin, C. Gu, and G. Jin, “Complete polarization controller based on magneto-optic crystals and fixed quarter wave plates,” Opt. Express 14, 3484–3490 (2006). [CrossRef]
  35. ThorLabs isolators at 780 nm, http://thorlabs.com/newgrouppage9.cfm?objectgroup_id=4914 .
  36. Quantum Technology, Inc. antireflective coatings, http://www.quantumtech.com/apps/901.pdf .
  37. Tydex coatings, http://www.tydexoptics.com/pdf/Coatings.pdf .
  38. ThorLabs broadband optical isolators, http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6302 .
  39. Del Mar Photonics broadband optical isolators, http://www.dmphotonics.com/Faradays_broadband.htm .
  40. Newport broadband optical isolators, http://search.newport.com/?x2=sku q2=ISO-05-800-BB-P .
  41. M. H. Levitt and R. Freeman, “NMR population inversion using a composite pulse,” J. Magn. Reson. 33, 473–476 (1979). [CrossRef]
  42. M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986). [CrossRef]
  43. J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4, 383–387 (2005). [CrossRef]
  44. Z. Yu, F. Xu, X. Lin, X. Song, and X. Qian, “Tunable broadband isolator based on electro-optically induced linear gratings in a nonlinear photonic crystal,” Opt. Lett. 35, 3327–3329 (2010). [CrossRef]
  45. Z. Yu and S. Fan, “Optical isolation: a non-magnetic approach,” Nat. Photonics 5, 517–519 (2011). [CrossRef]
  46. M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5, 549–553 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited