OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 1 — Jan. 1, 2013
  • pp: 22–31

Full speckle suppression in laser projectors using two Barker code-type diffractive optical elements

Anatoliy Lapchuk, Andriy Kryuchyn, Vyacheslav Petrov, Victor Yurlov, and Volodymyr Klymenko  »View Author Affiliations

JOSA A, Vol. 30, Issue 1, pp. 22-31 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (729 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The mathematical model of a speckle-suppression method based on two Barker code-type diffractive optical elements (DOEs) moving in orthogonal directions is developed. The analytic formulae for speckle suppression efficiency are obtained. The model indicates that the one pair of DOEs can be used for laser beams of different colors. The speckle contrast is not dependent on the distance from the viewer to the screen until the distance decreases below the distance where the spatial resolution of the eye on the screen is less than the length of the image of the DOE structure period on the screen. The analysis of the simulated results demonstrates that the method can decrease the speckle contrast to less than 5%, which is below human eye sensitivity, with an optical efficiency greater than 90%.

© 2012 Optical Society of America

OCIS Codes
(110.1650) Imaging systems : Coherence imaging
(110.6150) Imaging systems : Speckle imaging

ToC Category:
Imaging Systems

Original Manuscript: July 24, 2012
Revised Manuscript: October 4, 2012
Manuscript Accepted: October 20, 2012
Published: December 11, 2012

Anatoliy Lapchuk, Andriy Kryuchyn, Vyacheslav Petrov, Victor Yurlov, and Volodymyr Klymenko, "Full speckle suppression in laser projectors using two Barker code-type diffractive optical elements," J. Opt. Soc. Am. A 30, 22-31 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. V. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt. 49, F79–F98 (2010). [CrossRef]
  2. J. C. Dainty, Laser Speckle and Related Phenomena (Spinger-Verlag, 1975).
  3. J. W. Goodman, Speckle Phenomena in Optics. Theory and Applications (Roberts, 2006).
  4. P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 7232–7234 (2009). [CrossRef]
  5. N. George and N. A. Jain, “Speckle reduction using multiple tones of illumination,” Appl. Opt. 12, 1202–1212 (1973). [CrossRef]
  6. A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T(2008). [CrossRef]
  7. Y. Zhang, H. Dong, R. Wang, J. Duan, A. Shi, Q. Fang, and Y. Liu, “Demonstration of a home projector based on RGB semiconductor lasers,” Appl. Opt. 51, 3584–3589 (2012). [CrossRef]
  8. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012). [CrossRef]
  9. A. R. Sarmani, M. H. Abu Bakar, A. A. Bakar, F. R. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express 19, 14152–14159 (2011). [CrossRef]
  10. E. G. Rawson, A. B. Nafarrate, R. E. Norton, and J. W. Goodman, “Speckle-free rear-projection screen using two close screens in slow relative motion,” J. Opt. Soc. Am. 66, 1290–1294(1976). [CrossRef]
  11. Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchid, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J. Opt. Soc. Am. A 27, 1812–1817 (2010). [CrossRef]
  12. L. Wang, T. Tschudi, T. Halldorsson, and P. R. Pétursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37, 1770–1775 (1998). [CrossRef]
  13. S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt. 49, 4385–4391 (2010). [CrossRef]
  14. J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett. 29, 11–13 (2004). [CrossRef]
  15. J. I. Trisnadi, “Method, apparatus and diffuser for reducing laser speckle,” U.S. patent 6,747,781 (8June2004).
  16. Z. Gao, W. Tong, V. Kartashov, M. N. Akram, and X. Chen, “Replacing two-dimensional binary phase matrix by a pair of one-dimensional dynamic phase matrices for laser speckle reduction,” J. Display Technol. 8, 291–295 (2012). [CrossRef]
  17. V. Yurlov, A. Lapchuk, S.-K. Yun, J-H. Song, and H.-S. Yang, “Speckle suppression in scanning laser display,” Appl. Opt. 47, 179–187 (2008). [CrossRef]
  18. S. K. Yun, J. Song, T. W. Lee, V. Yurlov, H. W. Park, C. Park, H. Kim, J. Yang, J. Cheong, and A. Lapchuk, “Spatial optical modulator (SOM): Samsung’s light modulator for the next generation laser display,” Proc. Soc. Inf. Disp. 29-1, 551–555 (2006). [CrossRef]
  19. J. I. Trisnadi, C. B. Carlisle, and V. Monteverde, “Overview and applications of grating light valve TM based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004). [CrossRef]
  20. M. W. Kowarz, J. C. Brazas, and J. G. Phalen, “Conformal grating electromechanical system (GEMS) for high-speed digital light modulation,” in Micro Electro Mechanical Systems, 2002: Fifteenth IEEE International Conference Digest (IEEE, 2002), pp. 568–573.
  21. R. Sprague, M. Champion, M. Brown, D. Brown, M. Freeman, and M. Niesten, “Mobile projectors using scanned beam displays,” in Mobile Displays, Technology and Applications, K. Bhowmik, Z. Li, and P. J. Bos, eds. (Wiley, 2008).
  22. W. O. Davis, R. Sprague, and J. Miller, “MEMS-based pico projector display,” in Optical MEMS and Nanophotonics, 2008 IEEE/LEOS International Conference (IEEE, 2008), pp. 31–32.
  23. V. Yurlov, A. Lapchuk, S. Yun, J. Song, I. Yeo, H. Yang, and S. An, “Speckle suppression in scanning laser displays: aberration and defocusing of the projection system,” Appl. Opt. 48, 80–90 (2009). [CrossRef]
  24. M. N. Akram, K. Kartashov, and Z. Tong, “Speckle reduction in line-scan laser projectors using binary phase codes,” Opt. Lett. 35, 444–446 (2010). [CrossRef]
  25. Z. Tong, X. Chen, M. N. Akram, and A. Aksnes, “Compound speckle characterization method and reduction by optical design,” J. Display Technol. 8, 132–137 (2012). [CrossRef]
  26. S.-D. An, A. Lapchuk, V. Yurlov, J. H. Song, H. W. Park, J. W. Jang, W. C. Shin, S. Kargapoltsev, and S.-K. Yun, “Speckle suppression in laser display using several partially coherent beams,” Opt. Express 17, 92–103 (2009). [CrossRef]
  27. D. Kohler, W. L. Seitz, T. R. Loree, and S. D. Gardner, “Speckle reduction in pulsed-laser photographs,” Opt. Commun. 12, 24–28 (1974). [CrossRef]
  28. M. J. Sun and Z. K. Lu, “Speckle suppression with a rotating light pipe,” Opt. Eng. 49, 024202 (2010). [CrossRef]
  29. D. S. Mehta, D. N. Naik, R. K. Singh, and M. Takeda, “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Appl. Opt. 51, 1894–1904 (2012). [CrossRef]
  30. B. Dingel, S. Kawata, and S. Minami, “Speckle reduction with virtual incoherent laser illumination using a modified fiber array,” Optik 94, 132–136 (1993).
  31. B. Dingel and S. Kawata, “Speckle-free image in a laser-diode microscope by using the optical feedback effect,” Opt. Lett. 18, 549–551 (1993). [CrossRef]
  32. J. Kim, E. Kim, D. T. Miller, and T. E. Milner, “Speckle reduction in OCT with multimode source fiber,” Proc. SPIE 5317, 246–250 (2004). [CrossRef]
  33. J. G. Manni and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express 20, 11288–11312 (2012). [CrossRef]
  34. J. W. Goodman, Statistical Optics (Wiley, 2000).
  35. P. Borwein and M. J. Mossinghoff, “Barker sequences and flat polynomials,” in Number Theory PolynomialsLondon Mathematical Society Lecture Notes Series (Cambridge University, 2008), Vol. 352, pp. 71–88.
  36. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited