OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 1 — Jan. 1, 2013
  • pp: 82–95

Wavefront reconstruction in adaptive optics systems using nonlinear multivariate splines

Cornelis C. de Visser and Michel Verhaegen  »View Author Affiliations

JOSA A, Vol. 30, Issue 1, pp. 82-95 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1464 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents a new method for zonal wavefront reconstruction (WFR) with application to adaptive optics systems. This new method, indicated as Spline based ABerration REconstruction (SABRE), uses bivariate simplex B-spline basis functions to reconstruct the wavefront using local wavefront slope measurements. The SABRE enables WFR on nonrectangular and partly obscured sensor grids and is not subject to the waffle mode. The performance of SABRE is compared to that of the finite difference (FD) method in numerical experiments using data from a simulated Shack–Hartmann lenslet array. The results show that SABRE offers superior reconstruction accuracy and noise rejection capabilities compared to the FD method.

© 2012 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(350.1260) Other areas of optics : Astronomical optics
(010.1285) Atmospheric and oceanic optics : Atmospheric correction

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: June 29, 2012
Revised Manuscript: September 27, 2012
Manuscript Accepted: October 20, 2012
Published: December 13, 2012

Cornelis C. de Visser and Michel Verhaegen, "Wavefront reconstruction in adaptive optics systems using nonlinear multivariate splines," J. Opt. Soc. Am. A 30, 82-95 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Beckers, P. Lena, O. Lai, P. Y. Madec, G. Rousset, M. Séchaud, M. J. Northcott, F. Roddier, J. L. Beuzit, F. Rigaut, and D. G. Sandler, Adaptive Optics in Astronomy (Cambridge University, 1999).
  2. D. L. Fried, “Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am. 67, 370–375 (1977). [CrossRef]
  3. J. Herrmann, “Least-squares wave front errors of minimum norm,” J. Opt. Soc. Am. 70, 28–35 (1980). [CrossRef]
  4. F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt. 27, 1223–1225 (1988). [CrossRef]
  5. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70, 998–1006 (1980). [CrossRef]
  6. M. Kissler-Patig, “Overall science goals and top level AO requirements for the E-ELT,” presented at First AO4ELT Conference, Victoria, Canada, B.C., September 25 and 30,2010.
  7. V. Korkiakoski and C. Vérinaud, “Simulations of the extreme adaptive optics system for EPICS,” Proc. SPIE 7736, 773643 (2010).
  8. B. L. Ellerbroek, “Efficient computation of minimum-variance wave-front reconstructors with sparse matrix techniques,” J. Opt. Soc. Am. 19, 1803–1816 (2002). [CrossRef]
  9. C. R. Vogel, “Sparse matrix methods for wavefront reconstruction, revisited,” Proc. SPIE5490, 1327–1335 (2004).
  10. L. Gilles, C. R. Vogel, and B. L. Ellerbroek, “Multigrid preconditioned conjugate-gradient method for large-scale wave-front reconstruction,” J. Opt. Soc. Am. 19, 1817–1822 (2002). [CrossRef]
  11. C. R. Vogel and Q. Yang, “Multigrid algorithm for least-squares wavefront reconstruction,” Appl. Opt. 45, 705–715 (2006). [CrossRef]
  12. M. Rosensteiner, “Cumulative reconstructor: fast wavefront reconstruction algorithm for extremely large telescopes,” J. Opt. Soc. Am. 28, 2132–2138 (2011). [CrossRef]
  13. G. M. Dai, “Modal wave-front reconstruction with Zernike polynomials and Karhunen–Loève functions,” J. Opt. Soc. Am. 13, 1218–1225 (1996). [CrossRef]
  14. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  15. L. A. Poyneer, D. T. Gavel, and J. M. Brase, “Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform,” J. Opt. Soc. Am. 19, 2100–2111(2002). [CrossRef]
  16. L. A. Poyneer, B. A. Machintosh, and J. P. Veran, “Fourier transform wavefront control with adaptive prediction of the atmosphere,” J. Opt. Soc. Am. 24, 2645–2660 (2007). [CrossRef]
  17. P. J. Hampton, P. Agathoklis, and C. Bradley, “A new wave-front reconstruction method for adaptive optics systems using wavelets,” IEEE J. Select. Topics Signal Process. 2, 781–792 (2008). [CrossRef]
  18. G. Awanou, M. J. Lai, and P. Wenston, “The multivariate spline method for scattered data fitting and numerical solutions of partial differential equations,” in Wavelets and Splines, G. Chen and M. J. Lai, eds. (Nashboro, 2005), pp. 24–75.
  19. C. C. de Visser, “Global nonlinear model identification with multivariate splines,” Ph.D. thesis (Delft University of Technology, 2011).
  20. C. C. de Visser, Q. P. Chu, and J. A. Mulder, “A new approach to linear regression with multivariate splines,” Automatica 45, 2903–2909 (2009). [CrossRef]
  21. C. C. de Visser, Q. P. Chu, and J. A. Mulder, “Differential constraints for bounded recursive identification with multivariate splines,” Automatica 47, 2059–2066 (2011). [CrossRef]
  22. M. J. Lai and L. L. Schumaker, Spline Functions on Triangulations (Cambridge University, 2007).
  23. M. D. Oliker, “Sensing waffle in the Fried geometry,” Proc. SPIE 3353, 964–971 (1998). [CrossRef]
  24. W. Zou and J. P. Rolland, “Quantifications of error propagation in slope-based wavefront estimations,” J. Opt. Soc. Am. 23, 2629–2638 (2006). [CrossRef]
  25. C. de Boor, “B-form basics,” in Geometric Modeling: Algorithms and New Trends (SIAM, 1987).
  26. X. L. Hu, D. F. Han, and M. J. Lai, “Bivariate splines of various degrees for numerical solution of partial differential equations,” SIAM J. Sci. Comput. 29, 1338–1354 (2007). [CrossRef]
  27. M. J. Lai and L. L. Schumaker, “On the approximation power of bivariate splines,” Adv. Comput. Math. 9, 251–279(1998). [CrossRef]
  28. M. J. Lai, “Some sufficient conditions for convexity of multivariate Bernstein–Bezier polynomials and box spline surfaces,” Studia Scient. Math. Hung. 28, 363–374 (1990). [CrossRef]
  29. R. H. Hudgin, “Wavefront reconstruction for compensated imaging,” J. Opt. Soc. Am. 67, 375–378(1977). [CrossRef]
  30. J. M. Conan, G. Rousset, and P. Y. Madec, “Wave-front temporal spectra in high-resolution imaging through turbulence,” J. Opt. Soc. Am. 12, 1559–1570 (1995). [CrossRef]
  31. R. Conan, “Mean-square residual error of a wavefront after propagation through atmospheric turbulence and after correction with Zernike polynomials,” J. Opt. Soc. Am. 25, 526–536 (2008). [CrossRef]
  32. Y. Dai, F. Li, X. Cheng, Z. Jiang, and S. Gong, “Analysis on Shack–Hartmann wave-front sensor with fourier optics,” Opt. Laser Technol. 39, 1374–1379 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited