OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 1921–1928

Arbitrary interference curves by coincidence detection: theory and experiment

Saroosh Shabbir, Marcin Swillo, and Gunnar Björk  »View Author Affiliations


JOSA A, Vol. 30, Issue 10, pp. 1921-1928 (2013)
http://dx.doi.org/10.1364/JOSAA.30.001921


View Full Text Article

Enhanced HTML    Acrobat PDF (531 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We discuss how to use coincidence detection to generate unusual, nonsinusoidal interference curves by using not a single detector, but several in coincidence. The method works for both strong (classical) and weak (on the few-photon level) light, although in the latter case the detection becomes probabilistic with low efficiency. Using the method, one can tailor the coincidence measurement setup to obtain essentially any interference pattern. We then use the method to experimentally demonstrate phase-difference state interference patterns in the few-photon regime that are highly nonsinusoidal. We also discuss optimal implementation of the method with regard to fluctuations and success probability, and we analyze the origin and magnitude of errors.

© 2013 Optical Society of America

OCIS Codes
(000.1600) General : Classical and quantum physics
(260.3160) Physical optics : Interference
(270.0270) Quantum optics : Quantum optics

ToC Category:
Physical Optics

History
Original Manuscript: June 6, 2013
Manuscript Accepted: August 1, 2013
Published: September 6, 2013

Citation
Saroosh Shabbir, Marcin Swillo, and Gunnar Björk, "Arbitrary interference curves by coincidence detection: theory and experiment," J. Opt. Soc. Am. A 30, 1921-1928 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-10-1921


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992). [CrossRef]
  2. C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, “Demonstration of a fundamental quantum logic gate,” Phys. Rev. Lett. 75, 4714–4717 (1995). [CrossRef]
  3. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  4. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997). [CrossRef]
  5. J. M. Jacobson, G. Björk, I. Chuang, and Y. Yamamoto, “Photonic de Broglie waves,” Phys. Rev. Lett. 74, 4835–4838 (1995). [CrossRef]
  6. T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007). [CrossRef]
  7. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000). [CrossRef]
  8. E. J. S. Fonseca, C. H. Monken, and S. Pádua, “Measurement of the de Broglie wavelength of a multiphoton wave packet,” Phys. Rev. Lett. 82, 2868–2871 (1999). [CrossRef]
  9. K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89, 213601 (2002). [CrossRef]
  10. P. Walther, J. W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, “De Broglie wavelength of a non-local four-photon state,” Nature 429, 158–161 (2004). [CrossRef]
  11. J. G. Rarity, P. R. Tapster, E. Jakeman, T. Larchuk, R. A. Campos, M. C. Teich, and B. E. A. Saleh, “Two-photon interference in a Mach-Zehnder interferometer,” Phys. Rev. Lett. 65, 1348–1351 (1990). [CrossRef]
  12. M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87, 013602 (2001). [CrossRef]
  13. M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161–164 (2004). [CrossRef]
  14. I. Afek, O. Ambar, and Y. Silberberg, “High-NOON states by mixing quantum and classical light,” Science 328, 879–881 (2010). [CrossRef]
  15. T. Tsegaye, J. Söderholm, M. Atatüre, A. Trifonov, G. Björk, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Experimental demonstration of three mutually orthogonal polarization states of entangled photons,” Phys. Rev. Lett. 85, 5013–5017 (2000). [CrossRef]
  16. R. Thew, A. Acin, H. Zbinden, and N. Gisin, “Experimental realization of entangled qutrits for quantum communication,” Quantum Inform. Comput. 4, 93–101 (2004).
  17. H. Hofmann, “Generation of highly nonclassical n-photon polarization states by superbunching at a photon bottleneck,” Phys. Rev. A 70, 023812 (2004). [CrossRef]
  18. F. W. Sun, Z. Y. Ou, and G. C. Guo, “Projection measurement of the maximally entangled N-photon state for a demonstration of the N-photon de Broglie wavelength,” Phys. Rev. A 73, 023808 (2006). [CrossRef]
  19. S. J. Bentley and R. W. Boyd, “Nonlinear optical lithography with ultra-high sub-Rayleigh resolution,” Opt. Express 12, 5735–5740 (2004). [CrossRef]
  20. K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. OBrien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98, 223601 (2007). [CrossRef]
  21. C. Kothe, G. Björk, and M. Bourennane, “Arbitrarily high super-resolving phase measurements at telecommunication wavelengths,” Phys. Rev. A 81, 063836 (2010). [CrossRef]
  22. S. Shabbir, M. Swillo, and G. Björk, “Synthesis of arbitrary, two-mode, high-visibility N-photon interference patterns,” Phys. Rev. A 87, 053821 (2013). [CrossRef]
  23. M. V. Berry and S. Popescu, “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” J. Phys. A 39, 6965–6977 (2006). [CrossRef]
  24. G. Khoury, H. S. Eisenberg, E. J. S. Fonseca, and D. Bouwmeester, “Nonlinear interferometry via Fock-state projection,” Phys. Rev. Lett. 96, 203601 (2006). [CrossRef]
  25. Y. Gao, P. M. Anisimov, C. F. Wildfeuer, J. Luine, H. Lee, and J. P. Dowling, “Super-resolution at the shot-noise limit with coherent states and photon-number-resolving detectors,” J. Opt. Soc. Am. B 27, A170–A174 (2010). [CrossRef]
  26. R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited