OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 2002–2011

Iterative linear focal-plane wavefront correction

C. S. Smith, R. Marinică, A. J. den Dekker, M. Verhaegen, V. Korkiakoski, C. U. Keller, and N. Doelman  »View Author Affiliations


JOSA A, Vol. 30, Issue 10, pp. 2002-2011 (2013)
http://dx.doi.org/10.1364/JOSAA.30.002002


View Full Text Article

Enhanced HTML    Acrobat PDF (520 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an efficient approximation to the nonlinear phase diversity (PD) method for wavefront reconstruction and correction from intensity measurements with potential of being used in real-time applications. The new iterative linear phase diversity (ILPD) method assumes that the residual phase aberration is small and makes use of a first-order Taylor expansion of the point spread function (PSF), which allows for arbitrary (large) diversities in order to optimize the phase retrieval. For static disturbances, at each step, the residual phase aberration is estimated based on one defocused image by solving a linear least squares problem, and compensated for with a deformable mirror. Due to the fact that the linear approximation does not have to be updated with each correction step, the computational complexity of the method is reduced to that of a matrix-vector multiplication. The convergence of the ILPD correction steps has been investigated and numerically verified. The comparative study that we make demonstrates the improved performance in computational time with no decrease in accuracy with respect to existing methods that also linearize the PSF.

© 2013 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(100.5070) Image processing : Phase retrieval
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: May 16, 2013
Revised Manuscript: August 19, 2013
Manuscript Accepted: August 21, 2013
Published: September 13, 2013

Citation
C. S. Smith, R. Marinică, A. J. den Dekker, M. Verhaegen, V. Korkiakoski, C. U. Keller, and N. Doelman, "Iterative linear focal-plane wavefront correction," J. Opt. Soc. Am. A 30, 2002-2011 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-10-2002


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. G. Paxman, T. J. Schultz, and J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A 9, 1072–1085 (1992). [CrossRef]
  2. L. M. Mugnier, A. Blanc, and J. Idier, “Phase diversity: a technique for wave-front sensing and for diffraction-limited imaging,” Adv. Imaging Electron Phys. 141, 1–76 (2006). [CrossRef]
  3. D. R. Gerwe, M. M. Johnson, and B. Calef, “Local minima analysis of phase diverse phase retrieval using maximum likelihood,” The Advanced Maui Optical and Space Surveillance Technical Conference, Kihei, Hawaii (2008).
  4. R. W. Gerchberg and W. O. Saxton, “Phase retrieval by iterated projections,” Optik 35, 237–246 (1972).
  5. R. A. Gonsalves, “Small-phase solution to the phase-retrieval problem,” Opt. Lett. 26, 684–685 (2001). [CrossRef]
  6. C. U. Keller, V. Korkiakoski, N. Doelman, R. Fraanje, R. Andrei, and M. Verhaegen, “Extremely fast focal-plane wavefront sensing for extreme adaptive optics,” Proc. SPIE 8447, 844721 (2012). [CrossRef]
  7. F. Martinache, “Kernel phase in Fizeau interferometry,” Astrophys. J. 724, 464–469 (2010). [CrossRef]
  8. S. Meimon, T. Fusco, and L. M. Mugnier, “Lift: a focal-plane wavefront sensor for real-time low-order sensing on faint sources,” Opt. Lett. 35, 3036–3038 (2010). [CrossRef]
  9. C. van der Avoort, J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Aberration retrieval from the intensity point-spread function in the focal region using the extended Nijboer–Zernike approach,” J. Mod. Opt. 52, 1695–1728 (2005). [CrossRef]
  10. I. Mocœur, L. M. Mugnier, and F. Cassaing, “Analytical solution to the phase-diversity problem for real-time wavefront sensing,” Opt. Lett. 34, 3487–3489 (2009). [CrossRef]
  11. W. J. Wild, “Linear phase retrieval for wave-front sensing,” Opt. Lett. 23, 573–575 (1998). [CrossRef]
  12. J. Antonello, M. Verhaegen, R. Fraanje, T. van Werkhoven, H. C. Gerritsen, and C. U. Keller, “Semidefinite programming for model-based sensorless adaptive optics,” J. Opt. Soc. Am. A 29, 2428–2438 (2012). [CrossRef]
  13. D. J. Lee, M. C. Roggemann, and B. M. Welsh, “Cramer-rao analysis of phase-diverse wave-front sensing,” J. Opt. Soc. Am. A 16, 1005–1015 (1999). [CrossRef]
  14. A. Tokovinin and S. Heathcote, “Donut: measuring optical aberrations from a single extrafocal image,” Publ. Astron. Soc. Pac. 118, 1165–1175 (2006). [CrossRef]
  15. A. Polo, S. F. Pereira, and P. H. Urbach, “Theoretical analysis for best defocus measurement plane for robust phase retrieval,” Opt. Lett. 38, 812–814 (2013). [CrossRef]
  16. ANSI, “Methods for reporting optical aberrations of eyes,” (2004).
  17. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).
  18. F. Gustafsson, Statistical Sensor Fusion (Holmbergs i Malmö AB, 2010).
  19. G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins University, 1996).
  20. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. A 66, 207–211 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited