OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 2079–2089

Hysteretic characteristics of 1/λ4 scattering of light during adsorption and desorption of water in porous Vycor glass with nanopores

Shigeo Ogawa and Jiro Nakamura  »View Author Affiliations

JOSA A, Vol. 30, Issue 10, pp. 2079-2089 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1309 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Porous Vycor glass with nanopores is transparent in the visible region and is often used in colorimetric chemical sensing when impregnated with selectively reacting reagents. However, it has some disadvantages in sensing, since changes in the humidity of ambient air strongly affect its transmission. In this work, by combining a humidity-controlled thermostatic chamber and an ultraviolet–visible and near-infrared spectrophotometer through fiber optics, we analyzed the effect of increasing and decreasing humidity in the ambient air on the transparency change of the nanoporous glass. The transparency response in the visible region to changes in humidity is analyzed to correlate the turbidity response of the glass with the amount of water in it. The turbidity is found to be dependent on the inverse fourth power of the wavelength (1/λ4), which implies that Rayleigh-type scattering takes place for both adsorption and desorption of water. We show that measures of the extent of the optical inhomogeneity that causes the scattering, such as the effective radius of scatterers and their number density, exhibit a pronounced hysteretic characteristic for the imbibition and drainage of water, while the absorption inherent to imbibed water also shows another type of hysteresis that is quite similar to the sorption isotherms of water. On the basis of the above observations, we show that the transitory white turbidity of nanoporous glasses during changes in humidity can be consistently interpreted and quantitatively analyzed by a simple Rayleigh scattering mechanism.

© 2013 Optical Society of America

OCIS Codes
(290.4210) Scattering : Multiple scattering
(290.5870) Scattering : Scattering, Rayleigh
(160.2710) Materials : Inhomogeneous optical media

ToC Category:

Original Manuscript: July 24, 2013
Manuscript Accepted: August 12, 2013
Published: September 23, 2013

Shigeo Ogawa and Jiro Nakamura, "Hysteretic characteristics of 1/λ4 scattering of light during adsorption and desorption of water in porous Vycor glass with nanopores," J. Opt. Soc. Am. A 30, 2079-2089 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators B 47, 65–69 (1998). [CrossRef]
  2. T. Tanaka, A. Guilleux, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “A ppb-level NO2 gas sensor using coloration reactions in porous glass,” Sens. Actuators B 56, 247–253 (1999). [CrossRef]
  3. Y. Y. Maruo, “Measurement of ambient ozone using newly developed porous glass sensor,” Sens. Actuators B 126, 485–491 (2007). [CrossRef]
  4. Y. Y. Maruo, J. Nakamura, and M. Uchiyama, “Development of formaldehyde sensing element using porous glass impregnated with β-diketone,” Talanta 74, 1141–1147 (2008). [CrossRef]
  5. Y. Y. Maruo, J. Nakamura, M. Uchiyama, M. Higuchi, and K. Izumi, “Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent,” Sens. Actuators B 129, 544–550 (2008). [CrossRef]
  6. A. F. Novikov and V. I. Zemskii, “Glassy spectral gas sensors based on the immobilized indicators,” Proc. SPIE 2550, 119–129 (1995). [CrossRef]
  7. T. Ohyama, Y. Y. Maruo, T. Tanaka, and T. Hayashi, “A ppb-level NO2 detecting system using coloration reactions in porous glass and its humidity dependence,” Sens. Actuators B 64, 142–146 (2000). [CrossRef]
  8. K. Izumi, M. Utiyama, and Y. Y. Maruo, “Evaluation of air quality with simple and easy chemical sensors: development of porous glass-based elements,” in International Conference on Control, Automation and Systems (IEEE, 2008), pp. 2756–2760.
  9. S. Ogawa, “1/λ4 scattering of light during the drying process in porous Vycor glass with nano-sized pores,” J. Opt. Soc. Am. A 30, 154–159 (2013). [CrossRef]
  10. M. E. Lines and P. Klocek, “Optical transmission theory,” in Infrared Fiber Optics, J. S. Sanghera and I. D. Aggarwal, eds. (CRC Press, 1998), p. 19.
  11. D. Dollimore and G. R. Heal, “An improved method for the calculation of pore size distribution from adsorption data,” J. Appl. Chem. 14, 109–114 (1964). [CrossRef]
  12. D. L. Wood and E. M. Rabinovich, “Infrared studies of alkoxide gels,” J. Non-Cryst. Solids 82, 171–176 (1986). [CrossRef]
  13. A. A. Evstrapov and N. A. Esikova, “Study of porous glasses by the methods of optical spectroscopy,” J. Opt. Technol. 75, 266–270 (2008). [CrossRef]
  14. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969), pp. 31–39.
  15. F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders & Porous Solids (Academic, 1999).
  16. J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993). [CrossRef]
  17. J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995). [CrossRef]
  18. G. W. Scherer, “Theory of drying,” J. Ceram. Am. Soc. 73, 3–14 (1990). [CrossRef]
  19. T. M. Shaw, “Movement of a drying front in a porous material,” in Material Research Society Symposium Proceedings, C. J. Brinker, D. E. Clark, and D. R. Ulrich, eds., Better Ceramics Through Chemistry II (Material Research Society, 1986), Vol. 73, pp. 215–223.
  20. T. M. Shaw, “Drying as an immiscible displacement process with fluid counterflow,” Phys. Rev. Lett. 59, 1671–1674 (1987). [CrossRef]
  21. D. Wilkinson and J. F. Willemsen, “Invasion percolation: a new form of percolation theory,” J. Phys. A 16, 3365–3376 (1983). [CrossRef]
  22. J. Schroeder, “Light scattering in glass,” in Treatise on Materials Science and Technology, M. Tomozawa and R. H. Doremus, eds. (Academic, 1977), Vol. 12, pp. 157–222.
  23. S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Eglehaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. U.S.A. 109, 10245–10250 (2012). [CrossRef]
  24. P. R. Wakeling, “What is Vycor glass?” Appl. Opt. 18, 3208–3210 (1979).
  25. V. P. Soprunyuk, D. Wallacher, P. Huber, and K. Knorr, “Freezing and melting of Ar in mesopores studied by optical transmission,” Phys. Rev. B 67, 144105 (2003). [CrossRef]
  26. V. P. Soprunyuk, D. Wallacher, P. Huber, R. Ackermann, K. Knorr, and A. V. Kityk, “Optical transmission measurements on phase transitions of O2 and CO in mesoporous glass,” J. Low Temp. Phys. 134, 1043–1053 (2004). [CrossRef]
  27. D. Wallacher, V. P. Soprunyuk, A. V. Kityk, P. Huber, and K. Knorr, “Capillary sublimation of Ar in mesoporous glass,” Phys. Rev. B 71, 052101 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited