OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 2133–2139

High-resolution tomographic diffractive microscopy in reflection configuration

Guillaume Maire, Yi Ruan, Ting Zhang, Patrick C. Chaumet, Hugues Giovannini, Daniel Sentenac, Anne Talneau, Kamal Belkebir, and Anne Sentenac  »View Author Affiliations


JOSA A, Vol. 30, Issue 10, pp. 2133-2139 (2013)
http://dx.doi.org/10.1364/JOSAA.30.002133


View Full Text Article

Enhanced HTML    Acrobat PDF (634 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tomographic diffractive microscopy (TDM) is a label-free imaging technique that reconstructs the 3D refractive index map of the probed object with an improved resolution compared to confocal microscopy. In this work, we consider a TDM implementation in which the sample is deposited on a reflective substrate. We show that this configuration requires calibration and inversion procedures that account for the presence of the substrate for getting highly resolved quantitative reconstructions.

© 2013 Optical Society of America

OCIS Codes
(180.6900) Microscopy : Three-dimensional microscopy
(110.1758) Imaging systems : Computational imaging
(110.6955) Imaging systems : Tomographic imaging
(110.3200) Imaging systems : Inverse scattering

ToC Category:
Imaging Systems

History
Original Manuscript: August 1, 2013
Revised Manuscript: September 3, 2013
Manuscript Accepted: September 3, 2013
Published: September 30, 2013

Citation
Guillaume Maire, Yi Ruan, Ting Zhang, Patrick C. Chaumet, Hugues Giovannini, Daniel Sentenac, Anne Talneau, Kamal Belkebir, and Anne Sentenac, "High-resolution tomographic diffractive microscopy in reflection configuration," J. Opt. Soc. Am. A 30, 2133-2139 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-10-2133


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002). [CrossRef]
  2. Y. Sung, W. Choi, C. Fang-Yen, K. B. zadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009). [CrossRef]
  3. B. Simon, M. Debailleul, A. Beghin, Y. Tourneur, and O. Haeberlé, “High-resolution tomographic diffractive microscopy of biological samples,” J. Biophotonics 3, 462–467 (2010). [CrossRef]
  4. M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011). [CrossRef]
  5. M. Mir, S. D. Babacan, M. Bednarz, M. N. Do, I. Golding, and G. Popescu, “Visualizing Escherichia coli sub-cellular structure using sparse deconvolution spatial light interference tomography,” PLoS ONE 7, e39816 (2012). [CrossRef]
  6. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013). [CrossRef]
  7. N. Destouches, C. A. Guérin, M. Lequime, and H. Giovannini, “Determination of the phase of the diffracted field in the optical domain. application to the reconstruction of surface profiles,” Opt. Commun. 198, 233–239 (2001). [CrossRef]
  8. O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010). [CrossRef]
  9. E. Mudry, P. C. Chaumet, K. Belkebir, G. Maire, and A. Sentenac, “Mirror-assisted tomographic diffractive microscopy with isotropic resolution,” Opt. Lett. 35, 1857–1859 (2010). [CrossRef]
  10. E. Mudry, E. L. Moal, P. Ferrand, P. C. Chaumet, and A. Sentenac, “Isotropic diffraction-limited focusing using a single objective lens,” Phys. Rev. Lett. 105, 203903 (2010). [CrossRef]
  11. S. W. Hell and E. H. K. Stelzer, “Fundamental improvement of resolution with a 4pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun. 93, 277–282 (1992). [CrossRef]
  12. V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006). [CrossRef]
  13. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006). [CrossRef]
  14. M. Sarmis, B. Simon, M. Debailleul, B. Colicchio, V. Georges, J.-J. Delaunay, and O. Haeberlé, “High resolution reflection tomographic diffractive microscopy,” J. Mod. Opt. 57, 740–745 (2010). [CrossRef]
  15. G. Maire, F. Drsek, J. Girard, H. Giovannini, A. Talneau, D. Konan, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography,” Phys. Rev. Lett. 102, 213905 (2009). [CrossRef]
  16. J. Girard, G. Maire, H. Giovannini, A. Talneau, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Nanometric resolution using far-field optical tomographic microscopy in the multiple scattering regime,” Phys. Rev. A 82, 061801 (2010). [CrossRef]
  17. S. Arhab, G. Soriano, Y. Ruan, G. Maire, A. Talneau, D. Sentenac, P. Chaumet, K. Belkebir, and H. Giovannini, “Nanometric resolution with far-field optical profilometry,” Phys. Rev. Lett. 111, 053902 (2013). [CrossRef]
  18. Y. Ruan, P. Bon, E. Mudry, G. Maire, P. C. Chaumet, H. Giovannini, K. Belkebir, A. Talneau, B. Wattellier, S. Monneret, and A. Sentenac, “Tomographic diffractive microscopy with a wavefront sensor,” Opt. Lett. 37, 1631–1633 (2012). [CrossRef]
  19. M. Born and E. Wolf, Principles of Optics (Pergamon, 1959).
  20. O. Haeberlé, A. Sentenac, and H. Giovannini, An Introduction to Diffractive Tomographic Microscopy, A. M. Vilas and J. D. Alvarez, eds., Modern Research and Educational Topics in Microscopy, Vol. II (Formatex, 2007).
  21. K. Belkebir, P. C. Chaumet, and A. Sentenac, “Influence of multiple scattering on three-dimensional imaging with optical diffraction tomography,” J. Opt. Soc. Am. A 23, 586–595 (2006). [CrossRef]
  22. P. C. Chaumet and K. Belkebir, “Three-dimensional reconstruction from real data using a conjugate gradient-coupled dipole method,” Inverse Probl. 25, 024003 (2009). [CrossRef]
  23. P. C. Chaumet, A. Sentenac, and A. Rahmani, “Coupled dipole method for scatterers with large permittivity,” Phys. Rev. E 70, 036606 (2004). [CrossRef]
  24. E. Mudry, P. C. Chaumet, K. Belkebir, and A. Sentenac, “Electromagnetic wave imaging of three-dimensional targets using a hybrid iterative inversion method,” Inverse Probl. 28, 065007 (2012). [CrossRef]
  25. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 1975).
  26. K. Belkebir, P. C. Chaumet, and A. Sentenac, “Superresolution in total internal reflection tomography,” J. Opt. Soc. Am. A 22, 1889–1897 (2005). [CrossRef]
  27. The experiment was automatized using the free software OpticsBenchUI.
  28. G. Maire, J. Girard, F. Drsek, H. Giovannini, A. Talneau, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Experimental inversion of optical diffraction tomography data with a nonlinear algorithm in the multiple scattering regime,” J. Mod. Opt. 57, 746–755 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited