OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2216–2224

Fast and accurate 3D object recognition directly from digital holograms

Mozhdeh Seifi, Loic Denis, and Corinne Fournier  »View Author Affiliations

JOSA A, Vol. 30, Issue 11, pp. 2216-2224 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1986 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Pattern recognition methods can be used in the context of digital holography to perform the task of object detection, classification, and position extraction directly from the hologram rather than from the reconstructed optical field. These approaches may exploit the differences between the holographic signatures of objects coming from distinct object classes and/or different depth positions. Direct matching of diffraction patterns, however, becomes computationally intractable with increasing variability of objects due to the very high dimensionality of the dictionary of all reference diffraction patterns. We show that most of the diffraction pattern variability can be captured in a lower dimensional space. Good performance for object recognition and localization is demonstrated at a reduced computational cost using a low-dimensional dictionary. The principle of the method is illustrated on a digit recognition problem and on a video of experimental holograms of particles.

© 2013 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(100.5010) Image processing : Pattern recognition
(090.1995) Holography : Digital holography

ToC Category:
Image Processing

Original Manuscript: May 10, 2013
Revised Manuscript: July 30, 2013
Manuscript Accepted: August 29, 2013
Published: October 4, 2013

Mozhdeh Seifi, Loic Denis, and Corinne Fournier, "Fast and accurate 3D object recognition directly from digital holograms," J. Opt. Soc. Am. A 30, 2216-2224 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010). [CrossRef]
  2. J. Coupland and J. Lobera, “Optical tomography and digital holography,” Meas. Sci. Technol. 19, 070101 (2008). [CrossRef]
  3. K. D. Hinsch and S. F. Herrmann, “Holographic particle image velocimetry,” Meas. Sci. Technol. 15, R61 (2004). [CrossRef]
  4. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006). [CrossRef]
  5. C. P. Allier, G. Hiernard, V. Poher, and J. M. Dinten, “Bacteria detection with thin wetting film lensless imaging,” Biomed. Opt. Express 1, 762–770 (2010). [CrossRef]
  6. X. Zhang, I. Khimji, U. A. Gurkan, H. Safaee, P. N. Catalano, H. O. Keles, E. Kayaalp, and U. Demirci, “Lensless imaging for simultaneous microfluidic sperm monitoring and sorting,” Lab Chip 11, 2535–2540 (2011). [CrossRef]
  7. O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, “Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses,” Nat. Photonics 7, 247–254 (2013). [CrossRef]
  8. S. H. Lee, Y. Roichman, G. R. Yi, S. H. Kim, S. M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007). [CrossRef]
  9. F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010). [CrossRef]
  10. F. Soulez, L. Denis, C. Fournier, É. Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24, 1164–1171 (2007). [CrossRef]
  11. J. Fung, K. E. Martin, R. W. Perry, D. M. Kaz, R. McGorty, and V. N. Manoharan, “Measuring translational, rotational, and vibrational dynamics in colloids with digital holographic microscopy,” Opt. Express 19, 8051–8065 (2011). [CrossRef]
  12. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610–612 (2000). [CrossRef]
  13. T. Kim and T.-C. Poon, “Extraction of 3-D location of matched 3-D object using power fringe-adjusted filtering and Wigner analysis,” Opt. Eng. 38, 2176–2183 (1999). [CrossRef]
  14. T. Kim and T.-C. Poon, “Three-dimensional matching by use of phase-only holographic information and the Wigner distribution,” J. Opt. Soc. Am. A 17, 2520–2528 (2000). [CrossRef]
  15. H. Royer, “An application of high-speed microholography: the metrology of fogs,” Nouv. Rev. Opt. 5, 87–93 (1974). [CrossRef]
  16. F. Soulez, L. Denis, E. Thiébaut, C. Fournier, and C. Goepfert, “Inverse problem approach in particle digital holography: out-of-field particle detection made possible,” J. Opt. Soc. Am. A 24, 3708–3716 (2007). [CrossRef]
  17. A. Bourquard, N. Pavillon, E. Bostan, C. Depeursinge, and M. Unser, “A practical inverse-problem approach to digital holographic reconstruction,” Opt. Express 21, 3417–3433 (2013). [CrossRef]
  18. M. M. Marim, M. Atlan, E. Angelini, and J.-C. Olivo-Marin, “Compressed sensing with off-axis frequency-shifting holography,” Opt. Lett. 35, 871–873 (2010). [CrossRef]
  19. S. Lim, D. L. Marks, and D. J. Brady, “Sampling and processing for compressive holography [Invited],” Appl. Opt. 50, H75–H86 (2011). [CrossRef]
  20. Y. Rivenson, A. Stern, and B. Javidi, “Compressive Fresnel holography,” J. Display Technol. 6, 506–509 (2010). [CrossRef]
  21. K. Choi, R. Horisaki, J. Hahn, S. Lim, D. L. Marks, T. J. Schulz, and D. J. Brady, “Compressive holography of diffuse objects,” Appl. Opt. 49, H1–H10 (2010). [CrossRef]
  22. X. Zhang and E. Y. Lam, “Edge-preserving sectional image reconstruction in optical scanning holography,” J. Opt. Soc. Am. A 27, 1630–1637 (2010). [CrossRef]
  23. L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,” Opt. Lett. 34, 3475–3477 (2009). [CrossRef]
  24. J. A. Tropp, “Greed is good: algorithmic results for sparse approximation,” IEEE Trans. Inf. Theory 50, 2231–2242 (2004). [CrossRef]
  25. H. D. Simon and H. Zha, “Low rank matrix approximation using the lanczos bidiagonalization process with applications,” SIAM J. Sci. Comput 21, 2257–2274 (2000). [CrossRef]
  26. R. M. Larsen, Lanczos Bidiagonalization with Partial Reorthogonalization (Aarhus University, 1998).
  27. “FFTW,” http://www.fftw.org/ . [Online; accessed 23-November-2012].
  28. “OpenMP,” http://openmp.org/wp/ . [Online; accessed 23-November-2012].
  29. “PROPACK,” http://soi.stanford.edu/~rmunk/PROPACK/ . [Online; accessed 23-November-2012].
  30. C. Fournier, L. Denis, and T. Fournel, “On the single point resolution of on-axis digital holography,” J. Opt. Soc. Am. A 27, 1856–1862 (2010). [CrossRef]
  31. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods, 1st ed. (Wiley-VCH, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited