OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2237–2243

Partially coherent stable and spiral beams

T. Alieva, J. A. Rodrigo, A. Cámara, and E. Abramochkin  »View Author Affiliations

JOSA A, Vol. 30, Issue 11, pp. 2237-2243 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (673 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Stable and spiral coherent beams, which do not change the form of their intensity distribution apart from possible scaling and rotation during propagation and therefore possess self-healing properties, are widely applied in science and technology. On the other hand, it has been found that partially coherent light often provides better output than coherent light. Here we consider two methods for the design and experimental generation of partially coherent stable and spiral beams.

© 2013 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(140.3300) Lasers and laser optics : Laser beam shaping
(090.1995) Holography : Digital holography
(070.2575) Fourier optics and signal processing : Fractional Fourier transforms

ToC Category:
Coherence and Statistical Optics

Original Manuscript: June 18, 2013
Revised Manuscript: September 2, 2013
Manuscript Accepted: September 17, 2013
Published: October 11, 2013

T. Alieva, J. A. Rodrigo, A. Cámara, and E. Abramochkin, "Partially coherent stable and spiral beams," J. Opt. Soc. Am. A 30, 2237-2243 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Alieva, E. Abramochkin, A. Asenjo-Garcia, and E. Razueva, “Rotating beams in isotropic optical system,” Opt. Express 18, 3568–3573 (2010). [CrossRef]
  2. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001).
  3. T. Alieva, V. Lopez, F. A. Lopez, and L. B. Almeida, “The fractional Fourier transform in optical propagation problems,” J. Mod. Opt. 41, 1037–1044 (1994). [CrossRef]
  4. R. Simon and N. Mukunda, “Iwasawa decomposition in first-order optics: universal treatment of shape-invariant propagation for coherent and partially coherent beams,” J. Opt. Soc. Am. A 15, 2146–2155 (1998). [CrossRef]
  5. T. Alieva and M. J. Bastiaans, “Properties of the linear canonical integral transformation,” J. Opt. Soc. Am. A 24, 3658–3665 (2007). [CrossRef]
  6. D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993). [CrossRef]
  7. H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transforms and their optical implementation: II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993). [CrossRef]
  8. E. Abramochkin and V. Volostnikov, “Beam transformations and nontransformed beams,” Opt. Commun. 83, 123–135 (1991). [CrossRef]
  9. E. G. Abramochkin and V. G. Volostnikov, “Generalized Gaussian beams,” J. Opt. A 6, S157 (2004).
  10. T. Alieva and M. Bastiaans, “Mode mapping in paraxial lossless optics,” Opt. Lett. 30, 1461–1463 (2005). [CrossRef]
  11. M. A. Bandres and J. C. Gutiérrez-Vega, “Ince–Gaussian beams,” Opt. Lett. 29, 144–146 (2004). [CrossRef]
  12. M. A. Bandres and J. Gutiérrez-Vega, “Ince–Gaussian series representation of the two-dimensional fractional Fourier transform,” Opt. Lett. 30, 540–542 (2005). [CrossRef]
  13. J. C. Gutiérrez-Vega and M. A. Bandres, “Ince–Gaussian beams in a quadratic-index medium,” J. Opt. Soc. Am. A 22, 306–309 (2005). [CrossRef]
  14. T. Alieva and A. M. Barbé, “Self-fractional Fourier images,” J. Mod. Opt. 46, 83–99 (1999).
  15. F. Gori, G. Guattari, and C. Padovani, “Bessel–Gauss beams,” Opt. Commun. 64, 491–495 (1987). [CrossRef]
  16. E. Abramochkin and V. Volostnikov, “Spiral-type beams,” Opt. Commun. 102, 336–350 (1993). [CrossRef]
  17. E. Abramochkin and V. Volostnikov, “Spiral-type beams: optical and quantum aspects,” Opt. Commun. 125, 302–323 (1996). [CrossRef]
  18. E. G. Abramochkin and V. G. Volostnikov, “Spiral light beams,” Phys. Uspekhi 47, 1177–1203 (2004).
  19. Y. Y. Schechner, R. Piestun, and J. Shamir, “Wave propagation with rotating intensity distributions,” Phys. Rev. E 54, R50–R53 (1996). [CrossRef]
  20. R. Piestun and J. Shamir, “Generalized propagation-invariant wave fields,” J. Opt. Soc. Am. A 15, 3039–3044 (1998). [CrossRef]
  21. A. O’Neil and M. Padgett, “Axial and lateral trapping efficiency of Laguerre–Gaussian modes in inverted optical tweezers,” Opt. Commun. 193, 45–50 (2001). [CrossRef]
  22. E. Abramochkin, S. Kotova, A. Korobtsov, N. Losevsky, A. Mayorova, M. Rakhmatulin, and V. Volostnikov, “Microobject manipulations using laser beams with nonzero orbital angular momentum,” Laser Phys. 16, 842–848 (2006). [CrossRef]
  23. S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95, 021103 (2009). [CrossRef]
  24. A. N. B. Spektor and J. Shamir, “Singular beam microscopy,” Appl. Opt. 47, A78–A87 (2008). [CrossRef]
  25. S. B. S. Fürhapter, A. Jesacher, and M. Ritsch-Marte, “Spiral interferometry,” Opt. Lett. 30, 1953–1955 (2005). [CrossRef]
  26. P. Senthilkumaran, J. Masajadar, and S. Sato, “Interferometry with vortices,” Int. J. Opt. 2012, 517591 (2012).
  27. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004). [CrossRef]
  28. G. Gbur and O. Korotkova, “Angular spectrum representation for the propagation of arbitrary coherent and partially coherent beams through atmospheric turbulence,” J. Opt. Soc. Am. A 24, 745–752 (2007). [CrossRef]
  29. G. Gbur and R. K. Tyson, “Vortex beam propagation through atmospheric turbulence and topological charge conservation,” J. Opt. Soc. Am. A 25, 225–230 (2008). [CrossRef]
  30. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999). [CrossRef]
  31. X. Ma and G. R. Arce, “PSM design for inverse lithography with partially coherent illumination,” Opt. Express 16, 20126–20141 (2008). [CrossRef]
  32. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012). [CrossRef]
  33. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19, 1794–1802 (2002). [CrossRef]
  34. C. Schwartz and A. Dogariu, “Mode coupling approach to beam propagation in atmospheric turbulence,” J. Opt. Soc. Am. A 23, 329–338 (2006). [CrossRef]
  35. Y. Yuan, Y. Cai, J. Qu, H. T. Eyyuboğlu, Y. Baykal, and O. Korotkova, “M2-factor of coherent and partially coherent dark hollow beams propagating in turbulent atmosphere,” Opt. Express 17, 17344–17356 (2009). [CrossRef]
  36. M. Born and E. Wolf, Principles of Optics (Cambridge University, 2006).
  37. P. De Santis, F. Gori, G. Guattari, and C. Palma, “Synthesis of partially coherent fields,” J. Opt. Soc. Am. A 3, 1258–1262 (1986). [CrossRef]
  38. Y. Qiu, H. Guo, and Z. Chen, “Paraxial propagation of partially coherent Hermite–Gauss beams,” Opt. Commun. 245, 21–26 (2005). [CrossRef]
  39. F. Wang, Y. Cai, and O. Korotkova, “Partially coherent standard and elegant Laguerre–Gaussian beams of all orders,” Opt. Express 17, 22366–22379 (2009). [CrossRef]
  40. F. Gori, M. Santarsiero, R. Borghi, and G. Guattari, “Intensity-based modal analysis of partially coherent beams with Hermite–Gaussian modes,” Opt. Lett. 23, 989–991 (1998). [CrossRef]
  41. S. A. Ponomarenko, “A class of partially coherent beams carrying optical vortices,” J. Opt. Soc. Am. A 18, 150–156 (2001). [CrossRef]
  42. G. V. Bogatyryova, C. V. Fel’de, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878–880 (2003). [CrossRef]
  43. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  44. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Programmable two-dimensional optical fractional Fourier processor,” Opt. Express 17, 4976–4983 (2009). [CrossRef]
  45. J. A. Rodrigo, T. Alieva, A. Cámara, O. Martínez-Matos, P. Cheben, and M. L. Calvo, “Characterization of holographically generated beams via phase retrieval based on Wigner distribution projections,” Opt. Express 19, 6064–6077 (2011). [CrossRef]
  46. K. Sundar, N. Mukunda, and R. Simon, “Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams,” J. Opt. Soc. Am. A 12, 560–569 (1995). [CrossRef]
  47. R. Borghi, G. Guattari, L. de la Torre, F. Gori, and M. Santarsiero, “Evaluation of the spatial coherence of a light beam through transverse intensity measurements,” J. Opt. Soc. Am. A 20, 1763–1770 (2003). [CrossRef]
  48. T. Alieva and M. J. Bastiaans, “Self-affinity in phase space,” J. Opt. Soc. Am. A 17, 756–761 (2000). [CrossRef]
  49. E. Baleine and A. Dogariu, “Variable coherence tomography,” Opt. Lett. 29, 1233–1235 (2004). [CrossRef]
  50. F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010). [CrossRef]
  51. A. Cámara and T. Alieva, “Propagation of broken stable beams,” J. Mod. Opt. 58, 743–747 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1195 KB)     
» Media 2: MOV (1365 KB)     
» Media 3: MOV (1429 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited