## State of polarization and propagation factor of a stochastic electromagnetic beam in a gradient-index fiber |

JOSA A, Vol. 30, Issue 11, pp. 2306-2313 (2013)

http://dx.doi.org/10.1364/JOSAA.30.002306

Enhanced HTML Acrobat PDF (1321 KB)

### Abstract

With the help of a tensor method, we investigate the evolution properties of the state of polarization of an electromagnetic Gaussian Schell-model beam propagating through a gradient-index (GRIN) fiber. We find that the Stokes parameters and the polarization ellipse exhibit periodicity. The initial beam parameters affect the values of the Stokes parameters and the parameters of the polarization ellipse. Furthermore, based on the second-order moments of the Wigner distribution function, the explicit expression for the propagation factor (known as the

© 2013 Optical Society of America

**OCIS Codes**

(030.1640) Coherence and statistical optics : Coherence

(060.2310) Fiber optics and optical communications : Fiber optics

(260.5430) Physical optics : Polarization

(350.5500) Other areas of optics : Propagation

**ToC Category:**

Physical Optics

**History**

Original Manuscript: August 15, 2013

Revised Manuscript: September 14, 2013

Manuscript Accepted: September 15, 2013

Published: October 21, 2013

**Citation**

Shijun Zhu, Lin Liu, Yahong Chen, and Yangjian Cai, "State of polarization and propagation factor of a stochastic electromagnetic beam in a gradient-index fiber," J. Opt. Soc. Am. A **30**, 2306-2313 (2013)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-11-2306

Sort: Year | Journal | Reset

### References

- M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
- F. Gori, “Matrix treatment for partially polarized, partially coherent beams,” Opt. Lett. 23, 241–243 (1998). [CrossRef]
- F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, “Partially polarized Gaussian Schell-model beams,” J. Opt. A 3, 1–9 (2001). [CrossRef]
- E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312, 263–267 (2003). [CrossRef]
- H. Roychowdhury, S. A. Ponomarenko, and E. Wolf, “Change in the polarization of partially coherent electromagnetic beams propagating through the turbulent atmosphere,” J. Mod. Opt. 52, 1611–1618 (2005). [CrossRef]
- H. Wang, X. Wang, A. Zeng, and K. Yang, “Effects of coherence on anisotropic electromagnetic Gaussian–Schell model beams on propagation,” Opt. Lett. 32, 2215–2217 (2007). [CrossRef]
- X. Ji, E. Zhang, and B. Lu, “Changes in the spectrum and polarization of polychromatic partially coherent electromagnetic beams in the turbulent atmosphere,” Opt. Commun. 275, 292–300 (2007). [CrossRef]
- Z. Chen and J. Pu, “Propagation characteristics of aberrant stochastic electromagnetic beams in a turbulent atmosphere,” J. Opt. A 9, 1123–1130 (2007). [CrossRef]
- O. Korotkova, “Scintillation index of a stochastic electromagnetic beam propagating in random media,” Opt. Commun. 281, 2342–2348 (2008). [CrossRef]
- Y. Cai, O. Korotkova, H. T. Eyyuboğlu, and Y. Baykal, “Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere,” Opt. Express 16, 15834–15846 (2008). [CrossRef]
- L. Pan, M. Sun, C. Ding, Z. Zhao, and B. Lü, “Effects of astigmatism on spectra, coherence and polarization of stochastic electromagnetic beams passing through an astigmatic optical system,” Opt. Express 17, 7310–7321 (2009). [CrossRef]
- Y. Cai and O. Korotkova, “Twist phase-induced polarization changes in electromagnetic Gaussian Schell-model beams,” Appl. Phys. B 96, 499–507 (2009). [CrossRef]
- Z. Tong, Y. Cai, and O. Korotkova, “Ghost imaging with electromagnetic stochastic beams,” Opt. Commun. 283, 3838–3845 (2010). [CrossRef]
- Z. Tong and O. Korotkova, “Stochastic electromagnetic beams in positive-and negative-phase materials,” Opt. Lett. 35, 175–177 (2010). [CrossRef]
- O. Korotkova, Y. Cai, and E. Watson, “Stochastic electromagnetic beams for LIDAR systems operating through turbulent atmosphere,” Appl. Phys. B 94, 681–690 (2009). [CrossRef]
- S. Zhu, Y. Cai, and O. Korotkova, “Propagation factor of a stochastic electromagnetic Gaussian Schell-model beam,” Opt. Express 18, 12587–12598 (2010). [CrossRef]
- T. Shirai, O. Korotkova, and E. Wolf, “A method of generating electromagnetic Gaussian Schell-model beams,” J. Opt. A 7, 232–237 (2005). [CrossRef]
- F. Wang, G. Wu, X. Liu, S. Zhu, and Y. Cai, “Experimental measurement of the beam parameters of an electromagnetic Gaussian Schell-model source,” Opt. Lett. 36, 2722–2724 (2011). [CrossRef]
- F. Zhou, S. Zhu, and Y. Cai, “Spectral shift of an electromagnetic Gaussian Schell-model beam propagating through tissue,” J. Mod. Opt. 58, 38–44 (2011). [CrossRef]
- M. Yao, Y. Cai, H. T. Eyyuboğlu, Y. Baykal, and O. Korotkova, “Evolution of the degree of polarization of an electromagnetic Gaussian Schell-model beam in a Gaussian cavity,” Opt. Lett. 33, 2266–2268 (2008). [CrossRef]
- S. Zhu and Y. Cai, “M2-factor of a stochastic electromagnetic beam in a Gaussian cavity,” Opt. Express 18, 27567–27581 (2010). [CrossRef]
- C. Zhao, Y. Cai, and O. Korotkova, “Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams,” Opt. Express 17, 21472–21487 (2009). [CrossRef]
- S. Zhu and Y. Cai, “Spectral shift of a twisted electromagnetic Gaussian Schell-model beam focused by a thin lens,” Appl. Phys. B 99, 317–323 (2010). [CrossRef]
- L. Zhang, F. Wang, Y. Cai, and O. Korotkova, “Degree of paraxiality of a stochastic electromagnetic Gaussian Schell-model beam,” Opt. Commun. 284, 1111–1117 (2011). [CrossRef]
- E. Shchepakina and O. Korotkova, “Second-order statistics of stochastic electromagnetic beams propagating through non-Kolmogorov turbulence,” Opt. Express 18, 10650–10658 (2010). [CrossRef]
- G. Wu, F. Wang, and Y. Cai, “Coherence and polarization properties of a radially polarized beam with variable spatial coherence,” Opt. Express 20, 28301–28318 (2012). [CrossRef]
- C. Zhao, Y. Dong, G. Wu, F. Wang, Y. Cai, and O. Korotkova, “Experimental demonstration of coupling of an electromagnetic Gaussian Schell-model beam into a single-mode optical fiber,” Appl. Phys. B 108, 891–895 (2012). [CrossRef]
- F. Wang, S. Zhu, X. Hu, and Y. Cai, “Coincidence fractional Fourier transform with a stochastic electromagnetic Gaussian Schell-model beam,” Opt. Commun. 284, 5275–5280 (2011). [CrossRef]
- D. F. V. James, “Changes of polarization of light beams on propagation in free space,” J. Opt. Soc. Am. A 11, 1641–1643 (1994). [CrossRef]
- E. Wolf, “Polarization invariance in beam propagation,” Opt. Lett. 32, 3400–3401 (2007). [CrossRef]
- D. Zhao and E. Wolf, “Light beams whose degree of polarization does not changes in propagation,” Opt. Commun. 281, 3067–3070 (2008). [CrossRef]
- O. Korotkova and E. Wolf, “Generalized Stokes parameters of random electromagnetic beams,” Opt. Lett. 30, 198–200 (2005). [CrossRef]
- O. Korotkova and E. Wolf, “Changes in the state of polarization of a random electromagnetic beam on propagation,” Opt. Commun. 246, 35–43 (2005). [CrossRef]
- T. Setälä, M. Kaivola, and A. T. Friberg, “Degree of polarization in near fields of thermal sources: effects of surface waves,” Phys. Rev. Lett. 88, 123902 (2002). [CrossRef]
- T. Setälä, K. Lindfors, and A. T. Friberg, “Degree of polarization in 3D optical fields generated from a partially polarized plane wave,” Opt. Lett. 34, 3394–3396 (2009). [CrossRef]
- A. Luis, “Degree of polarization for three-dimensional fields as a distance between correlation matrices,” Opt. Commun. 253, 10–14 (2005). [CrossRef]
- A. Luis, “Polarization distribution and degree of polarization for three-dimensional quantum light fields,” Phys. Rev. A 71, 063815 (2005). [CrossRef]
- Z. Mei, “Generalized Stokes parameters of three-dimensional stochastic electromagnetic beams,” Opt. Express 18, 22826–22832 (2010). [CrossRef]
- B. Kanseri and H. C. Kandpal, “Experimental determination of electric cross-spectral density matrix and generalized Stokes parameters for a laser beam,” Opt. Lett. 33, 2410–2412 (2008). [CrossRef]
- B. Kanseri, S. Rath, and H. C. Kandpal, “Direct determination of the generalized Stokes parameters from the usual Stokes parameters,” Opt. Lett. 34, 719–721 (2009). [CrossRef]
- O. Korotkova, M. Salem, A. Dogariu, and E. Wolf, “Changes in the polarization ellipse of random electromagnetic beams propagating through the turbulent atmosphere,” Waves Random Complex Media 15, 353–364 (2005).
- O. Korotkova, M. Yao, Y. Cai, H. T. Eyyuboğlu, and Y. Baykal, “State of polarization of a stochastic electromagnetic beam in an optical resonator,” J. Opt. Soc. Am. A 25, 2710–2720 (2008). [CrossRef]
- J. Li, C. Ding, and B. Lü, “Generalized Stokes parameters of random electromagnetic vortex beams propagating through atmospheric turbulence,” Appl. Phys. B 103, 245–255 (2011). [CrossRef]
- D. Liu and Z. Zhou, “Generalized stokes parameters of stochastic electromagnetic beams propagating through uniaxial crystals orthogonal to the optical axis” J. Opt. A 11, 065710 (2009). [CrossRef]
- W. Gao and O. Korotkova, “Changes in the state of polarization of a random electromagnetic beam propagating through tissue,” Opt. Commun. 270, 474–478 (2007). [CrossRef]
- V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996). [CrossRef]
- G. P. Agrawal, A. K. Ghatak, and C. L. Mehta, “Propagation of partially coherent beam through Selfoc fibers,” Opt. Commun. 12, 333–337 (1974). [CrossRef]
- C. Zhao, Y. Cai, F. Wang, X. Lu, and Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33, 1389–1391 (2008). [CrossRef]
- S. Zhu, C. Zhao, Y. Chen, and Y. Cai, “Experimental generation of a polychromatic partially coherent dark hollow beam,” Optik 124, 5271–5273 (2013). [CrossRef]
- M. Van Buren and N. A. Riza, “Foundations for low-loss fiber gradient-index lens pair coupling with the self-imaging mechanism,” Appl. Opt. 42, 550–565 (2003). [CrossRef]
- G. P. Agarwal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
- A. Gamliel and G. P. Agrawal, “Wolf effect in homogenous and inhomogenous media,” J. Opt. Soc. Am. A 7, 2184–2192 (1990). [CrossRef]
- H. Roychowdhury, G. P. Agarwal, and E. Wolf, “Changes in the spectrum, in the spectral degree of polarization, and in the spectral degree of coherence of a partially coherent beam propagating through a gradient-index fiber,” J. Opt. Soc. Am. A 23, 940–948 (2006). [CrossRef]
- A. E. Siegman, Lasers (University Science Books, 1986), Chap. 20.
- J. Collins and A. Stuart, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970). [CrossRef]
- Q. Lin and Y. Cai, “Tensor ABCD law for partially coherent twisted anisotropic Gaussian–Schell model beams,” Opt. Lett. 27, 216–218 (2002). [CrossRef]
- A. E. Siegman, “New developments in laser resonators,” Proc. SPIE 1224, 2C14 (1990). [CrossRef]
- M. Santarsiero, F. Gori, R. Borghi, G. Cincotti, and P. Vahimaa, “Spreading properties of beams radiated by partially coherent Schell-model sources,” J. Opt. Soc. Am. A 16, 106–112 (1999). [CrossRef]
- J. Serna, R. Martinez-Herrero, and P. M. Mejfas, “Parametric characterization of general partially coherent beams propagating through ABCD optical systems,” J. Opt. Soc. Am. A 8, 1094–1098 (1991). [CrossRef]
- R. Martinez-Herrero and P. M. Mejias, “Second-order spatial characterization of hard-edge diffracted beams,” Opt. Lett. 18, 1669–1671 (1993). [CrossRef]
- M. J. Bastiaans, “Application of the Wigner distribution function to partially coherent light,” J. Opt. Soc. Am. A 3, 1227–1238 (1986). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.